Capitulo 4

Distancias de Wasserstein

4.1 Definicao e propriedades iniciais

A distancias de Wasserstein-p é definida no conjunto das medidas de Radon com p-momento finito,
i.e. dado um ponto qualquer xg € X do espaco Polonés ambiente, definimos

P,(X) = {u € P(X): My(p) = /X dy(x, z0)dp(z) < +oo}. (4.1)

Para todo p > 1, condi¢do que p,v € Z,(X) garante que o problema de Kantorovitch com custo
dado por ¢(z,y) = db.(z,y) tem valor finito e por isso podemos definir a seguinte quantidade

1/p
Wo(p,v) = min (/ db (z,y)dy(z, ) = |ldx (s )l oo - 4.2
(1) Lo Y@ y)dy(z,y) I (-5 )l o) (4.2)

Para provar que essa quantidade define uma distancia, precisamos do teorema de disintegracao,
que nada mais é que a existéncia de densidades de probabilidade condicional. Essa é uma questao
nao trivial em teoria de probabilidade, mas para medidas de probabilidade borelianas num espago
polonés, a esperanca condicional sempre existe.!

Teorema 4.1.1 (Disintegragio). Sejay € 2(X x V) e sejav = (my)ym a marginal em Y. Entdo
existe uma familia de probabilidades

{'Vy}yey C 2(X)

tal que:

1. para toda fung¢ao boreliana limitada ¢ : X X Y — R,

/Xxyéo(%y)dv(x,y):/y(/x ap(w,y)dvy(m)) dv(y). (4.3)

Além disso, nds escrevemos v = v, @ v(dy).

1Ver “Multidimensional Diffusion Processes”- Daniel W.Stroock, S. R. Srinivasa Varadhan, 1997, Teorema 1.1.6
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48 CAPITULO 4. DISTANCIAS DE WASSERSTEIN

2. para v-q.t.p. y, vy € uma medida de probabilidade;
3. a familia y — v, € mensurdvel no sentido fraco.

Demonstra¢ao. Como X e ) sao poloneses, o espago produto X x ) também é polonés. Logo existe
uma probabilidade condicional regular de v em relacao a aplicagao

Ty : X XY=

Isto significa que existe uma familia {7, },cy de medidas de probabilidade em X tal que, para
toda funcao boreliana limitada ¢,

E,Jp(X,Y)|Y =y] = /X o(x,y)dvy,(z) para v-q.t.p. y.

Integrando essa identidade em relagdo a v, obtemos exatamente (4.3). A mensurabilidade fraca
segue da construcao padrao das probabilidades condicionais em espacos métricos. A unicidade vale
pelo teorema de unicidade da esperanga condicional. O

A disintegracao fornece uma interpretagao candnica de planos de transporte como familias de
medidas condicionais. Ela permite provar o seguinte resultado estrutural.

Lema 4.1.1 (Lema de colagem). Sejam p,v, A € P(X) e
Y12 € H(p,v), Vo3 € (v, A).
Entao existe v € 2(X3) tal que
(71'17772);17:712, (772,773):17:723-
No enunciado anterior, 7;(x1, 2, x3) = x;, para ¢ € {1,2,3}.

Demonstracao. Aplicamos o Teorema 4.1.1 aos dois planos.
Primeiro, disintegramos 12 em relagao a segunda variavel:

’)’12((31.%, dy) = ’712,y(dx) & V(dy)a

onde 12, € #(X) para v-q.t.p. y.
De modo analogo, disintegramos 7,3 em relagao & primeira variével:

Y23(dy, dz) = 23,4 (dz) ® v(dy),

com o34 € P(X).
Definimos entdo uma medida ™ € Z(X3) por

’Y(dxa dya dZ) d;f. 712,y(dx) ® '}/23,y(dz) ® V(dy)

Pela formula de disintegragao, para toda fungao teste boreliana limitada ¢,

[ et = [ ( / ¢<x7y>dvlz,y<x>> a(y).

0 que mostra que (mx,Ty)yy = y12. O mesmo argumento vale para (7my, 73)py = 7Yo3. O
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Proposicao 4.1.1. A quantidade W, é uma distdncia no espago Z,(X).
Demonstragdo. Para provar que W, precisamos demonstrar os pontos seguintes:
1. 0 < Wy(p,v) = Wp(v, u), para todo par p, v € Zp(X);
2. W,(-,-) satisfaz a desigualdade triangular;
3. Wy(u,v) =0 se, e somente se, 1 = v.

O ponto 1. segue diretamente da definicao. Para provar o item 2., tomemos trés medidas
w, v, A € Pp(X). Seja v, x € (1, A) e va, € II(A, v) planos de transporte 6timo para Wp(p, A) e
Wy (A, v). Usando o lema de colagem, tome um plano de transporte v € Z(X x X x X) tais que
(m1,2)y = Yux € (T2,3)y = V-

Podemos usar a desigualdade triangular em LP(v), de modo que

Wi (ps v) < lldae (e, 23) | Loy < lldx (@1, 22) [l 1oy + lda (22, 23) || o) - (4.4)

Pela otimalidade de 7,,,x, pela condi¢ao de marginais de -y, temos que [ dx (21, 22)| 1o () = Wp(p, A).
Similarmente, temos |dx (z2, %3) 1s(,) = Wp(A, v). A desigualdade triangular segue.

Para provar o ponto 3, note que se ;1 = v, claramente o mapa de transporte 7' = id atinge a
cota inferior 0 < ||dx (X, X)|[1»(qp) € portanto é 6timo. Para verificar a afirmacéo conversa, note
que se

0=WP,(u,v) =/ d% (z,y)d,
XXX

entdo v é concentrada no grafico da aplicagdo identidade. Logo, pela Proposigao 3.3.1, segue que
v = (id,id)4p, e portanto v = p. O

Proposigao 4.1.2. Para todos 1 < q < p, temos que
Wl(:uv V) < Wq(/f“ﬂ V) < WP(N? V)v

e se X € limitado, temos a desigualdade reversa

p—1

Wy(p,v) < (diam X) 7 Wy (u,v) ™.

Demonstrag¢ao. A prova segue da desigualdade de Jensen. Dados ¢ < p, tome v um plano de
transporte otimo para W} (u,v). Como ¢ < p, a fungdo t tP/1 & convexa e portanto

p/q
Wyl 1) < ( / dzg(x,mdv) < [ ey = W)
XXX XXX

A primeira estimativa segue tomando a poténcia 1/p em ambos os lados.
Para a segunda, tome agora v um plano de transporte 6timo para Wi (u,v). Entdo, como
dx(z,y) < diam X < +oo para todo par de pontos (z,y), temos que

Wi < [

d% (z,y)dy < (diam X)pfl/ dx (2, y)dy = (diam X)* "Wy (u, v).
XxX

XXX

Novamente, a estimativa segue tomando a poténcia 1/p em ambos os lados. O
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A Proposigao 4.1.2 motiva um melhor entendimento da distancia de Wasserstein-1. De fato, o
caso particular p = 1 admite uma caracterizagao mais fina da formulagao dual

WP (u,v) = sup / pdp + / o dv,
® X X

onde relembramos que ¢° é transformada ¢ de ¢ e o supremo pode ser tomado entre fungoes ¢
que ja sejam c-concavas, isto €, ja sao a transformada ¢ de uma outra fungao. No caso ¢ = dy,
fungoes c-concavas sao 1-Lipschitz. Isso nos da a seguinte simplicagao da férmula de dualidade, que
é chamada muitas vezes de dualidade de Kantorovitch-Rubistein

def.

Proposigao 4.1.3. Seja ¢ € €°(X), e considere o custo c(x,y) = dx(z,y), entio ¢°(z)
infyex dx(x,y) — p(y) € 1-Lipschitz. Por outro lado, se ¢ é 1-Lipschitz, entao ¢© = —¢.

Consequentemente, temos a sequinte formula de dualidade para a distdncia de Wasserstein-1:
para todo par p,v € P1(X) temos que

Wil v) = sup /X fd(u—v).

f 1-Lip

Demonstragao. Para todo x € X, e todo ¢ > 0, existe pela defini¢do de infimo, um y, tal que

dX(zvyr) - (P(yT) < (PC(I) +e.

Desse modo, dados x,z € X', tome y,, como & cima e note que

©°(2) — ¢(x) < dw(2,y2) — P(Yz) = (dx(,y2) — 0(y2)) — € = da(2,yz) — dx(T,y:) — €
<dy(z,z)—e.

Trocando os papeis de = e z obtemos que
9°(2) — ()] < dx(z,2) — ¢,

e fazendo ¢ — 0, obtemos que ¢°¢ é 1-Lipschitz.
Por outro lado, tomando x = y no infimo definindo ¢°(y), temos que ¢°(y) < —p(y). Dado
e > 0, tome z tal que dy(x,y) — p(z) < ¢°(y) + . Como ¢ é 1-Lipschitz segue que

—p(y) <dx(z,y) — () < 9°(y) +e.

Como ¢ > 0 é arbitrario, o resultado segue.
A segunda afirmagdo é uma consequéncia direta das condigoes de otimalidade obtidas com a
transformada c e o resultado anterior. O

A féormula de dualidade para Wy (u, v)

Wiy = sw [ fau-v) (4.5)
f 1—Lipschitz J X

exemplifica a propriedade fundamental das distancias de Wasserstein, de ser equivalente & con-
vergéncia estreita de medidas de probabilidade. O leitor atento percebera que o conjunto onde o
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supremo é tomado, das fungdes 1-Lipschitz, é estritamente menor que das fungoes 6;(X) e portanto
o supremo & cima ir para 0 nao implica diretamente que

/ fdpn —— / fdp
X n—oo X
para toda fungdo f € % (X).

Pelo Lema de aproximagao de fungoes s.c.i., podemos usar funcoes Lipschitz e limitadas, junto
de argumentos de convergéncia monoétona para provar o resultado seguinte.

Lema 4.1.2. Seja X um espago polonés e (pin),cy C P(X). Entao j, —— u se, e somente se,
n—oo

/ fdun —>/ fdu, para todo fungao f 1-Lipschitz.
X n—roo X

4.2 Propriedades topoldgicas de (£, W)

Agora queremos entender como se comporta o espaco &p(X) quando munido da distancia W,. Boa
parte das propriedades topologicas de (F2)(X), W)) sdo herdadas do espago ambiente (X, dy).

A completude do espago (£2,(X), W,) pode ser obtida a partir da dualidade de Kantorovitch-
Rubistein em Wj.

Teorema 4.2.1. Se o espago (X,dx) é completo, entao o espago (P,(X), W) também é completo
para todo p > 1.

Demonstragcao. Dado p > 1, seja (fin)nen C Pp(X) uma sequéncia de Cauchy em (Z2,(X), W,).
Vamos provar que toda sequéncia de Cauchy em (£2,(X), W,,) é tight, e portanto pré-compacta na
topologia estreita pelo Teorema de Prokohorov.

Pela Proposigao 4.1.2, a sequéncia (fi, )nen também é de Cauchy em (£ (X), W1). Logo, para
todo € > 0, existe NV € N tal que para todo n > N, temos que

Wl(ﬂmﬂN) < 62'

O conjunto (,ui)f\;l sendo finito, ele é compacto, e portanto existe um conjunto compacto K C X
tal que
wi(X\K) <eparatodoi=1,...,N.

Pela defini¢ao de compacidade, existe uma quantidade finita de pontos (:r:j);n_l tais que
m
KcU= U B(xzj,e).
j=1

Seja U. = {x € X :dy(z,U) < e} C U;n:l B(z;,2¢), a e-vizinhanga de U. Logo existe uma funcao
Lipschitz ¢ : X — [0, 1] tal que 1y < ¢ < 1p.. De fato, basta tomar

o) = (1 _ ‘hSt(’U)) )
n

3
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Note que como a fungao disténcia é 1-Lipschitz, a fungao ¢ é é—Lipschitz. Logo, essa fungao ¢ pode
ser usada na formula de dualidade de Kantorovitch-Rubistein para obter, para todo n > N, que

fin(Ue) 2/ ed i :/ wduzv+/ @d(pn — pn)
X X X

1
> pn(U) - gwl(MmMN) >un(K)—e>1-2e.

Isso ndo implica a compacidade da sequéncia (g, )nen pois o conjunto U, ndo é compacto. No
entanto, dado € > 0 podemos repetir esse mesmo argumento e obter uma sequéncia de pontos
(74),cn tal que para todo k € N e todo n > N tenhamos que

Lhn, X\U (24,2 ke <27k

oo N(k)
Podemos entao definir o conjunto compacto K = ﬂ U (z;,27%¢). Logo, para todo n > N

pn(X\NK) <> i X\U (@i,27%e) | <D 27F

keN keN

Além disso, o conjunto K é fechado, como intersegao numeravel de conjuntos fechados, e totalmente
limitado. Logo, como em espagos métricos completos, qualquer conjunto é compacto se e somente
se é completo e totalmente limitados, segue que K é compacto.

Isso implica que a sequéncia (un)nen € tight e portanto pré-compacta na topologia estreita.
Seja u € P(X) um ponto de acumulacao da sequéncia (i, )nen na topologia estreita. Como as
distancias de Wasserstein sao semi-continuas inferiormente nessa topologia e (p,)nen € de Cauchy
em W, segue que

lim sup W, (e, 1) < limsup lim inf Wy, (ptn, porn) =  Hm Wy (pn, ptm) = 0.

n—00 n—oo M~ n,m—00

O

Exercicio 4.1. A prova do Teorema 4.2.2 é muito mais simples quando o espaco ambiente X & R<.
Por qué? Refaca essa prova nesse caso.

Para provar que (Z2,(X),W,) é um espago polonés, falta provar que é separavel. Para isso,
vamos definir o seguinte subconjunto de Z(X):

N €[0,1]NQ para todoi=1,..., N,
N
;azazl . Zai =1, NeN ) (46)
= i=1
onde (xi)ieN é um subconjunto denso de X, que existird sempre que o espago ambiente X for

ele mesmo separdavel. Como a uniao enumeravel de conjuntos enumeraveis é enumeravel, 2 é um
subconjunto enumeravel de Z(X).
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Teorema 4.2.2. Se o espago (X,dx) € separdvel, entao o espago (Pp(X), W) também é separdvel
para todo p > 1.

Demonstragao. Seja p € Z,(X), pelo teorema de Ulam para todo n € N existe um compacto K,
tal que

/ (14 d% (z,x0))dpu(z) < l
X\K, n

Dado um conjunto (z;);cy enumerével e denso X', pela definicdo de compacidade, para todo r > 0,
existe um numero finito de pontos (mz) } tal que
Ny
K, C | Br(zi).

i=1

Com um argumento classico, podemos construir uma familia finita de conjuntos disjuntos cobrindo
K,,, basta tomar
def def.
Up = Br(z1), Uiyr = Ui\ Br(wiy1).

Defina agora

,an dif 6’05.1/0 + Zaiéwm a; déf. ,U'(Uz) for 1 < { < N’m

_ N,
eap=1->;"a.
Desse modo, temos que

W (1, fin) < /

1
db (z, mo)du(z) + /d (x,z)dp(z) < — +rP > w(U;) < — —|—7’p
e, B Z ; Z

Tomando r = 1/n, podemos entao escolher u, € & arbitrariamente proximo de fi,,, por exemplo
Wy (fns Brn) < 1/m, com uma escolha apropriada de pesos a; suficientemente proximos de @;. Desse
modo, usando a desigualdade triangular temos que

W (1, i) < Wp(p, fin) + Wp(pn, fin) —— 0.

n— oo

Disso temos que &p,(X) é separavel na topologia induzida por W, O

4.3 A topologia induzida por W,

Agora que definimos as distancias de Wasserstein-p, queremos entender qual é a topologia que elas

induzem no espago Z,(X). Vamos provar que uma sequéncia (fn)neny C Pp(X) converge para

w € Zy(X) na métrica W, se, e somente se, i, —— p e os momentos de ordem p da sequéncia
n—oo

convergem para o momento de ordem p de p

Myan) = [ d(aaa)dien() = [l a)dn(o) = (o)

n— o0 X

Teorema 4.3.1. Seja (pin)neny C Pp(X) e p € Pp(X). Entao, Wy(in, p) — 0 se, e somente
n—o0
5 tm o e My(pn) = My (p).
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Demonstra¢do. Vamos primeiro provar que a convergéncia em W, implica a convergéncia fraca e a
convergéncia dos momentos. Fixado um ponto zy € X', note que

Mylian) = [ dlazo)den (o) = W a8
Logo, a desigualdade triangular implica que

My (pan) P — M,y(p)*/?

= |Wp(ﬂmamo) - Wp((smmﬂ)‘ < Wp(:unaﬂ) — 0,

n—oo

o que implica a convergéncia dos momentos.
Para provar a convergéncia fraca, recorde para que uma sequéncia (i, )nen convirja fracamente

para pu, é suficiente provar que fdu, —— / fdu para toda funcao Lipschitz f. Para uma
X n—oo X

sequéncia (ftn)nen convergindo para pu em W, usando a férmula de dualidade de Kantorovitch-
Rubistein e o fato de que W7 < W, temos que

n—oo

/ fdpn, —/ fdu‘ = Lip(f)Wi (ptn, pr) < Lip(f)Wp(pin, ) — 0.
X X

A convergéncia fraca segue.

Para provar a afirmagdo conversa, trataremos primeiro o caso onde as medidas u, e p sao
concentradas em um conjunto limitado K. Nesse caso, pela Proposicao 4.1.2, as distancias W), e
W1 s@o equivalentes em Z(K). Logo basta provar que Wi (pn, ft) — 0.

Seja uma sequéncia (fy),, oy de fungdes 1-Lipschitz 6timas para a formulagao dual de Wy (,,, mu).
Podemos assumir sem perda de generalidade que f,(zg) = 0 para um ponto fixo 2y € K. Dessa
forma, as fungoes f, sao 1-Lipschitz e uniformemente limitadas em K, logo pelo Teorema de
Ascoli-Arzela, existe uma subsequéncia (fy, ),y convergindo uniformemente para uma funcio f
1-Lipschitz.

Disso, segue que

Wi (g 1) = / Funlin, — / fondp
X X

:/deunk —/dequ/X(fnk — £)dpin, _/X(fnk — P)dp.
——0

<2 fur =l 50

0 k— oo

k—o0

O primeiro termo converge para 0 pela convergéncia fraca, enquanto que o segundo converge para
0 pela convergéncia uniforme de f,, para f. Logo, a subsequéncia Wi (uy,, ) converge para 0.
Repetindo esse argumento para qualquer subsequéncia de p,,, temos que toda subsequéncia admite
uma nova subsequéncia que converge para pu na distdncia Wi. Segue da propriedade de Urysohn
que toda a sequéncia Wi (p,, ) converge para 0.

Usando a desigualdade W, (i, 1) < CWi (i, 1£)*/P, 0 mesmo vale para W, (pn, ).

No caso geral, considere um ponto zy € X e defina a sequéncia de medidas ndo negativas dada

por
def.

o0 = (L di (- @0)) s 0 = (L4 d5 (-, 20)) pe
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Pelo teorema de Portmanteau, segue que o, —— ¢ pois para todo conjunto aberto A, é facil
n—oo

de verificar que o(A) < liminf, , 0,(A). Dado um € > 0, tome um compacto K C X tal que
on(X\ K),o(X \ K) < e. Consideremos agora

frn = pn LK+ (1= 1 (K))0s,  px = pl K 4+ (1 — p(K))dy, -

Assumindo sem perdas de generalidade que o € K, temos que as medidas pux , € pixg sa0 concen-
tradas em K.
Também pelo teorema de Portmanteau, podemos provar que jg, —— pr. De fato, para
n—oo

todo conjunto aberto A, se o € A, temos que

pr(A) = p(ANK) + (1 — p(K)) = p(AU (X \ K))
< liminf i, (AU (X' K))

= liminf pg ,(A).
n—oo

Se zp ¢ A, temos uma estimagao analoga.
Dessa forma, aplicando a desigualdade triangular, temos que

W (s 1) < Wy, ) + Wyt ns i) + Wy (s, p)-

O termo do meio converge para 0 pela primeira parte da prova, ja que as medidas s@o concentradas
em K e g, — pi. Para estimar os outros termos, consideremos apenas W, (11, pixc ), que pode
n

ser estimado com o plano de transporte simples dado por
v = (id, id)y (u L K) + (id, 20)s(uL X\ K).

Disso, segue que

W (i, i) < / (2, y)dyic (2, y) = / &, (2, 20)dpi(z)
XXX X\K

<o(X\K)<e.
Concluimos entao que

lim sup W, (pin, pt) < 2e + limsup W, (tk n, i) = 2€.

n— oo n— oo

Como € > 0 é arbitréario, a prova esta concluida. O

Observagao 4.3.1. Note na prova anterior que quando as medidas sao concentradas em um con-
junto limitado, a convergéncia fraca j4 implica a convergéncia em W),. Isso se explica pelo fato de
que db. (-, z0) € G (K).

Exercicio 4.2. Assim como no Exercicio 4.1, a prova do Teorema 4.3.1 é muito mais simples
quando o espaco ambiente X' & R?. Por qué? Refaca essa prova nesse caso.
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4.4 A lei dos grandes ntimeros de Glivenko-Cantelli

Com os resultados que ja conheciamos sobre a convergéncia estreita de medidas de probabilidade,
podemos demonstrar a lei dos Grandes Numeros de Glivenko-Cantelli para medidas empiricas, tam-
bém conhecido como o Teorema fundamental da estatistica, que incrementa a lei forte dos grandes
nimeros para varidveis aleatorias reais. Por outro lado, usando a caracterizagao de convergéncia
na distancia W, também podemos provar convergéncia em W, com probabilidade 1.

Primeiramente, estabelecemos o seguinte Lema, que fornece um conjunto enumerével de fungoes
teste, que implica a convergéncia estreita. Do mesmo jeito que diminuimos o conjunto %,(X)
para o conjunto Lip,(X) para verificar a convergéncia estreita de uma sequéncia de medidas de
probabilidade, podemos diminuir esse conjunto de fungoes teste ainda mais para um conjunto
enumeravel.

Lema 4.4.1 (Separador enumerével para a topologia estreita). Seja X um espago polonés. Entao

existe uma familia enumerdvel de fungoes Lipschitz F C Lip(X) tal que uma sequéncia (fin)neny ——
n—oo

u se, e somente se

/ fdun —>/ fdu para toda f € F.
X x

Demonstra¢ao. Podemos construir o conjunto F com fungoes construidas como: sejam 2 um sub-
conjunto denso e enumeravel de X' e f da forma

= , , g, €QN[-1,1)fori=1,...,N
f(sc)—mf{ql—i—pld;((x,y)/\l. ye P NeN }

O

Proposigao 4.4.1 (Lei dos Grandes Numeros de Glivenko-Cantelli para medidas empiricas). Seja
(2, F,P) um espago de probabilidade, e seja (X;);. uma sequéncia de varidveis aleatorias indepen-
dentes e identicamente distribuidas, com valores em X e lei u € P(X). Defina a medida empirica

1 N
def.
un N;‘SX’“

Entao, Wy(n, ) —— 0 P-quase certamente.
n—oo

Demonstracao. Pelo resultado anterior, existe um conjunto enumerével de fungdes F para o qual
verificar a convergéncia das integrais ja garante a convergéncia estreita das medidas. Assim, para
cada f € F, temos que (f(X;)),;cy € uma sequéncia i.i.d. de varidveis aleatorias. Por outro lado

1 N
= 3200

¢ a meédia de variaveis independentes e identicamente distribuidas com esperanca E[f(X;)] =
fdu. Pela Lei Forte dos Grandes Ntumeros, para cada f € F, existe um conjunto Qs de P-
X
probabilidade 1 onde

N—o00

1
N Xi d d Q.
¥ 0 FXi(w) 5 [ S para todo w €
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Como F é enumeravel, o conjunto {2 = ﬂ Q; tem probabilidade 1, portanto a convergéncia

fer
quase certamente vale simultaneamente para todo f € F. Pelo resultado anterior, isso implica

N F [ quase certamente.
(o]

Similarmente, a fungao z — d5 (x,x0) € L' (1), ja que p € P,(X), logo também segue da lei
dos grandes ntmeros que

N
My() = x5 3 (i, 70) ——— B[ (X, 0)] = My (1)

i=1

em um conjunto de P-probabilidade 1.

Tomando a interse¢ao dos conjuntos de probabilidade 1 referentes & convergéncia dos momentos
e associados a cada f € F, ainda temos um conjunto de probabilidade 1, e nesse conjunto, pela
caracterizagao de convergéncia na distancia de Wasserstein, temos que W, (un, ft) m 0. O



