
Capítulo 4

Distâncias de Wasserstein

4.1 Definição e propriedades iniciais
A distâncias de Wasserstein-p é definida no conjunto das medidas de Radon com p-momento finito,
i.e. dado um ponto qualquer x0 ∈ X do espaço Polonês ambiente, definimos

Pp(X )
def.
=

{
µ ∈ P(X ) :Mp(µ)

def.
=

ˆ
X
dX (x, x0)dµ(x) < +∞

}
. (4.1)

Para todo p ≥ 1, condição que µ, ν ∈ Pp(X ) garante que o problema de Kantorovitch com custo
dado por c(x, y) = dpX (x, y) tem valor finito e por isso podemos definir a seguinte quantidade

Wp(µ, ν)
def.
= min

γ∈Π(µ,ν)

(ˆ
X×X

dpX (x, y)dγ(x, y)

)1/p

= ∥dX (·, ·)∥Lp(γ) . (4.2)

Para provar que essa quantidade define uma distância, precisamos do teorema de disintegração,
que nada mais é que a existência de densidades de probabilidade condicional. Essa é uma questão
não trivial em teoria de probabilidade, mas para medidas de probabilidade borelianas num espaço
polonês, a esperança condicional sempre existe.1

Teorema 4.1.1 (Disintegração). Seja γ ∈ P(X ×Y) e seja ν def.
= (πY)♯π a marginal em Y. Então

existe uma família de probabilidades

{γy}y∈Y ⊂ P(X )

tal que:

1. para toda função boreliana limitada φ : X × Y → R,
ˆ
X×Y

φ(x, y)dγ(x, y) =

ˆ
Y

(ˆ
X
φ(x, y)dγy(x)

)
dν(y). (4.3)

Além disso, nós escrevemos γ = γy ⊗ ν(dy).
1Ver “Multidimensional Diffusion Processes”- Daniel W.Stroock, S. R. Srinivasa Varadhan, 1997, Teorema 1.1.6
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48 CAPÍTULO 4. DISTÂNCIAS DE WASSERSTEIN

2. para ν-q.t.p. y, γy é uma medida de probabilidade;

3. a família y 7→ γy é mensurável no sentido fraco.

Demonstração. Como X e Y são poloneses, o espaço produto X ×Y também é polonês. Logo existe
uma probabilidade condicional regular de γ em relação à aplicação

πY : X × Y → Y.

Isto significa que existe uma família {γy}y∈Y de medidas de probabilidade em X tal que, para
toda função boreliana limitada φ,

Eγ [φ(X,Y ) | Y = y] =

ˆ
X
φ(x, y)dγy(x) para ν-q.t.p. y.

Integrando essa identidade em relação a ν, obtemos exatamente (4.3). A mensurabilidade fraca
segue da construção padrão das probabilidades condicionais em espaços métricos. A unicidade vale
pelo teorema de unicidade da esperança condicional.

A disintegração fornece uma interpretação canônica de planos de transporte como famílias de
medidas condicionais. Ela permite provar o seguinte resultado estrutural.

Lema 4.1.1 (Lema de colagem). Sejam µ, ν, λ ∈ P(X ) e

γ12 ∈ Π(µ, ν), γ23 ∈ Π(ν, λ).

Então existe γ ∈ P(X 3) tal que

(π1, π2)♯γ = γ12, (π2, π3)♯γ = γ23.

No enunciado anterior, πi(x1, x2, x3) = xi, para i ∈ {1, 2, 3}.

Demonstração. Aplicamos o Teorema 4.1.1 aos dois planos.
Primeiro, disintegramos γ12 em relação à segunda variável:

γ12(dx, dy) = γ12,y(dx)⊗ ν(dy),

onde γ12,y ∈ P(X ) para ν-q.t.p. y.
De modo análogo, disintegramos γ23 em relação à primeira variável:

γ23(dy, dz) = γ23,y(dz)⊗ ν(dy),

com γ23,y ∈ P(X ).
Definimos então uma medida π ∈ P(X 3) por

γ(dx,dy, dz)
def.
= γ12,y(dx)⊗ γ23,y(dz)⊗ ν(dy).

Pela fórmula de disintegração, para toda função teste boreliana limitada φ,
ˆ
φ(x, y)d(πX , πY)♯γ =

ˆ
Y

(ˆ
X
φ(x, y)dγ12,y(x)

)
dν(y),

o que mostra que (πX , πY)♯γ = γ12. O mesmo argumento vale para (πY , π3)♯γ = γ23.
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Proposição 4.1.1. A quantidade Wp é uma distância no espaço Pp(X ).

Demonstração. Para provar que Wp precisamos demonstrar os pontos seguintes:

1. 0 ≤Wp(µ, ν) =Wp(ν, µ), para todo par µ, ν ∈ Pp(X );

2. Wp(·, ·) satisfaz a desigualdade triangular;

3. Wp(µ, ν) = 0 se, e somente se, µ = ν.

O ponto 1. segue diretamente da definição. Para provar o item 2., tomemos três medidas
µ, ν, λ ∈ Pp(X ). Seja γµ,λ ∈ Π(µ, λ) e γλ,ν ∈ Π(λ, ν) planos de transporte ótimo para Wp(µ, λ) e
Wp(λ, ν). Usando o lema de colagem, tome um plano de transporte γ ∈ P(X × X × X ) tais que
(π1,2)♯ = γµ,λ e (π2,3)♯ = γλ,ν .

Podemos usar a desigualdade triangular em Lp(γ), de modo que

Wp(µ, ν) ≤ ∥dX (x1, x3)∥Lp(γ) ≤ ∥dX (x1, x2)∥Lp(γ) + ∥dX (x2, x3)∥Lp(γ) . (4.4)

Pela otimalidade de γµ,λ, pela condição de marginais de γ, temos que ∥dX (x1, x2)∥Lp(γ) =Wp(µ, λ).
Similarmente, temos ∥dX (x2, x3)∥Lp(γ) =Wp(λ, ν). A desigualdade triangular segue.

Para provar o ponto 3, note que se µ = ν, claramente o mapa de transporte T = id atinge a
cota inferior 0 ≤ ∥dX (X,X)∥Lp(Ω,P) e portanto é ótimo. Para verificar a afirmação conversa, note
que se

0 =W p
p (µ, ν) =

ˆ
X×X

dpX (x, y)dγ,

então γ é concentrada no gráfico da aplicação identidade. Logo, pela Proposição 3.3.1, segue que
γ = (id, id)♯µ, e portanto ν = µ.

Proposição 4.1.2. Para todos 1 ≤ q ≤ p, temos que

W1(µ, ν) ≤Wq(µ, ν) ≤Wp(µ, ν),

e se X é limitado, temos a desigualdade reversa

Wp(µ, ν) ≤ (diamX )
p−1
p W1(µ, ν)

1/p
.

Demonstração. A prova segue da desigualdade de Jensen. Dados q < p, tome γ um plano de
transporte ótimo para W p

p (µ, ν). Como q < p, a função t 7→ tp/q é convexa e portanto

Wq(µ, ν)
p/q ≤

(ˆ
X×X

dqX (x, y)dγ

)p/q
≤
ˆ
X×X

dpX (x, y)dγ =W p
p (µ, ν).

A primeira estimativa segue tomando a potência 1/p em ambos os lados.
Para a segunda, tome agora γ um plano de transporte ótimo para W1(µ, ν). Então, como

dX (x, y) ≤ diamX < +∞ para todo par de pontos (x, y), temos que

W p
p (µ, ν) ≤

ˆ
X×X

dpX (x, y)dγ ≤ (diamX )
p−1
ˆ
X×X

dX (x, y)dγ = (diamX )
p−1

W1(µ, ν).

Novamente, a estimativa segue tomando a potência 1/p em ambos os lados.
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A Proposição 4.1.2 motiva um melhor entendimento da distância de Wasserstein-1. De fato, o
caso particular p = 1 admite uma caracterização mais fina da formulação dual

W p
p (µ, ν) = sup

φ

ˆ
X
φdµ+

ˆ
X
φcdν,

onde relembramos que φc é transformada c de φ e o supremo pode ser tomado entre funções φ
que já sejam c-concavas, isto é, já são a transformada c de uma outra função. No caso c = dX ,
funções c-concavas são 1-Lipschitz. Isso nos dá a seguinte simplicação da fórmula de dualidade, que
é chamada muitas vezes de dualidade de Kantorovitch-Rubistein

Proposição 4.1.3. Seja φ ∈ C 0(X ), e considere o custo c(x, y) = dX (x, y), então φc(x)
def.
=

infy∈X dX (x, y)− φ(y) é 1-Lipschitz. Por outro lado, se φ é 1-Lipschitz, então φc = −φ.
Consequentemente, temos a seguinte fórmula de dualidade para a distância de Wasserstein-1:

para todo par µ, ν ∈ P1(X ) temos que

W1(µ, ν) = sup
f 1-Lip

ˆ
X
fd(µ− ν).

Demonstração. Para todo x ∈ X , e todo ε > 0, existe pela definição de ínfimo, um yx tal que

dX (x, yx)− φ(yx) < φc(x) + ε.

Desse modo, dados x, z ∈ X , tome yx como à cima e note que

φc(z)− φc(x) ≤ dX (z, yx)− φ(yx)− (dX (x, yx)− φ(yx))− ε = dX (z, yx)− dX (x, yx)− ε

≤ dX (x, z)− ε.

Trocando os papeis de x e z obtemos que

|φc(z)− φc(x)| ≤ dX (x, z)− ε,

e fazendo ε→ 0, obtemos que φc é 1-Lipschitz.
Por outro lado, tomando x = y no ínfimo definindo φc(y), temos que φc(y) ≤ −φ(y). Dado

ε > 0, tome x tal que dX (x, y)− φ(x) ≤ φc(y) + ε. Como φ é 1-Lipschitz segue que

−φ(y) ≤ dX(x, y)− φ(x) ≤ φc(y) + ε.

Como ε > 0 é arbitrário, o resultado segue.
A segunda afirmação é uma consequência direta das condições de otimalidade obtidas com a

transformada c e o resultado anterior.

A fórmula de dualidade para W1(µ, ν)

W1(µ, ν) = sup
f 1−Lipschitz

ˆ
X
fd(µ− ν) (4.5)

exemplifica a propriedade fundamental das distâncias de Wasserstein, de ser equivalente à con-
vergência estreita de medidas de probabilidade. O leitor atento perceberá que o conjunto onde o
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supremo é tomado, das funções 1-Lipschitz, é estritamente menor que das funções Cb(X ) e portanto
o supremo à cima ir para 0 não implica diretamente que

ˆ
X
fdµn −−−−→

n→∞

ˆ
X
fdµ

para toda função f ∈ Cb(X ).
Pelo Lema de aproximação de funções s.c.i., podemos usar funções Lipschitz e limitadas, junto

de argumentos de convergência monótona para provar o resultado seguinte.

Lema 4.1.2. Seja X um espaço polonês e (µn)n∈N ⊂ P(X ). Então µn −−−−⇀
n→∞

µ se, e somente se,

ˆ
X
fdµn −−−−→

n→∞

ˆ
X
fdµ, para todo função f 1-Lipschitz.

4.2 Propriedades topológicas de (Pp,Wp)

Agora queremos entender como se comporta o espaço Pp(X ) quando munido da distância Wp. Boa
parte das propriedades topológicas de (Pp(X ),Wp) são herdadas do espaço ambiente (X , dX ).

A completude do espaço (Pp(X ),Wp) pode ser obtida a partir da dualidade de Kantorovitch-
Rubistein em W1.

Teorema 4.2.1. Se o espaço (X , dX ) é completo, então o espaço (Pp(X ),Wp) também é completo
para todo p ≥ 1.

Demonstração. Dado p ≥ 1, seja (µn)n∈N ⊂ Pp(X ) uma sequência de Cauchy em (Pp(X ),Wp).
Vamos provar que toda sequência de Cauchy em (Pp(X ),Wp) é tight, e portanto pré-compacta na
topologia estreita pelo Teorema de Prokohorov.

Pela Proposição 4.1.2, a sequência (µn)n∈N também é de Cauchy em (P1(X ),W1). Logo, para
todo ε > 0, existe N ∈ N tal que para todo n ≥ N , temos que

W1(µn, µN ) < ε2.

O conjunto (µi)
N
i=1 sendo finito, ele é compacto, e portanto existe um conjunto compacto K ⊂ X

tal que
µi(X \K) < ε para todo i = 1, . . . , N .

Pela definição de compacidade, existe uma quantidade finita de pontos (xj)
m
j=1 tais que

K ⊂ U
def.
=

m⋃
j=1

B(xj , ε).

Seja Uε
def.
= {x ∈ X : dX (x, U) < ε} ⊂

⋃m
j=1B(xj , 2ε), a ε-vizinhança de U . Logo existe uma função

Lipschitz φ : X → [0, 1] tal que 1U ≤ φ ≤ 1Uε
. De fato, basta tomar

φ(·) def.
=

(
1− dist(·, U)

ε

)
+

.
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Note que como a função distância é 1-Lipschitz, a função φ é 1
ε -Lipschitz. Logo, essa função φ pode

ser usada na fórmula de dualidade de Kantorovitch-Rubistein para obter, para todo n ≥ N , que

µn(Uε) ≥
ˆ
X
φdµn =

ˆ
X
φdµN +

ˆ
X
φd(µn − µN )

≥ µN (U)− 1

ε
W1(µn, µN ) ≥ µN (K)− ε > 1− 2ε.

Isso não implica a compacidade da sequência (µn)n∈N pois o conjunto Uε não é compacto. No
entanto, dado ε > 0 podemos repetir esse mesmo argumento e obter uma sequência de pontos
(xi)i∈N tal que para todo k ∈ N e todo n ≥ N tenhamos que

µn

X \
N(k)⋃
i=1

B(xi, 2
−kε)

 < 2−kε.

Podemos então definir o conjunto compacto K def.
=

∞⋂
k=1

N(k)⋃
i=1

B(xi, 2−kε). Logo, para todo n ≥ N

µn(X \K) ≤
∑
k∈N

µn

X \
N(k)⋃
i=1

B(xi, 2
−kε)

 <
∑
k∈N

2−kε = ε.

Além disso, o conjunto K é fechado, como interseção numerável de conjuntos fechados, e totalmente
limitado. Logo, como em espaços métricos completos, qualquer conjunto é compacto se e somente
se é completo e totalmente limitados, segue que K é compacto.

Isso implica que a sequência (µn)n∈N é tight e portanto pré-compacta na topologia estreita.
Seja µ ∈ P(X ) um ponto de acumulação da sequência (µn)n∈N na topologia estreita. Como as
distâncias de Wasserstein são semi-contínuas inferiormente nessa topologia e (µn)n∈N é de Cauchy
em Wp, segue que

lim sup
n→∞

Wp(µn, µ) ≤ lim sup
n→∞

lim inf
m→∞

Wp(µn, µm) = lim
n,m→∞

Wp(µn, µm) = 0.

Exercício 4.1. A prova do Teorema 4.2.2 é muito mais simples quando o espaço ambiente X é Rd.
Por quê? Refaça essa prova nesse caso.

Para provar que (Pp(X ),Wp) é um espaço polonês, falta provar que é separável. Para isso,
vamos definir o seguinte subconjunto de P(X ):

D
def.
=


N∑
i=1

aiδxi
:

ai ∈ [0, 1] ∩Q para todo i = 1, . . . , N,
N∑
i=1

ai = 1, N ∈ N

 , (4.6)

onde (xi)i∈N é um subconjunto denso de X , que existirá sempre que o espaço ambiente X for
ele mesmo separável. Como a união enumerável de conjuntos enumeráveis é enumerável, D é um
subconjunto enumerável de P(X ).
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Teorema 4.2.2. Se o espaço (X , dX ) é separável, então o espaço (Pp(X ),Wp) também é separável
para todo p ≥ 1.

Demonstração. Seja µ ∈ Pp(X ), pelo teorema de Ulam para todo n ∈ N existe um compacto Kn

tal que ˆ
X\Kn

(1 + dpX (x, x0))dµ(x) <
1

n
.

Dado um conjunto (xi)i∈N enumerável e denso X , pela definição de compacidade, para todo r > 0,
existe um número finito de pontos (xi)

Nn

i=1 tal que

Kn ⊂
Nn⋃
i=1

Br(xi).

Com um argumento clássico, podemos construir uma família finita de conjuntos disjuntos cobrindo
Kn, basta tomar

U1
def.
= Br(x1), Ui+1

def.
= Ui \Br(xi+1).

Defina agora

µ̄n
def.
= ā0δx0

+

Nn∑
i=1

āiδxi
, āi

def.
= µ(Ui) for 1 ≤ i ≤ Nn,

e ā0 = 1−
∑Nn

i=1 āi.
Desse modo, temos que

W p
p (µ, µ̄n) ≤

ˆ
X\Kn

dpX (x, x0)dµ(x) +

Nn∑
i=1

ˆ
Ui

dpX (x, xi)dµ(x) ≤
1

n
+ rp

Nn∑
i=1

µ(Ui) ≤
1

n
+ rp.

Tomando r = 1/n, podemos então escolher µn ∈ D arbitrariamente próximo de µ̄n, por exemplo
Wp(µn, µ̄n) < 1/n, com uma escolha apropriada de pesos ai suficientemente próximos de āi. Desse
modo, usando a desigualdade triangular temos que

Wp(µ, µn) ≤Wp(µ, µ̄n) +Wp(µn, µ̄n) −−−−→
n→∞

0.

Disso temos que Pp(X ) é separável na topologia induzida por Wp.

4.3 A topologia induzida por Wp

Agora que definimos as distâncias de Wasserstein-p, queremos entender qual é a topologia que elas
induzem no espaço Pp(X ). Vamos provar que uma sequência (µn)n∈N ⊂ Pp(X ) converge para
µ ∈ Pp(X ) na métrica Wp se, e somente se, µn −−−−⇀

n→∞
µ e os momentos de ordem p da sequência

convergem para o momento de ordem p de µ

Mp(µn) =

ˆ
X
dpX (x, x0)dµn(x) −−−−→

n→∞

ˆ
X
dpX (x, x0)dµ(x) =Mp(µ).

Teorema 4.3.1. Seja (µn)n∈N ⊂ Pp(X ) e µ ∈ Pp(X ). Então, Wp(µn, µ) −−−−→
n→∞

0 se, e somente
se, µn −−−−⇀

n→∞
µ e Mp(µn) −−−−→

n→∞
Mp(µ).
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Demonstração. Vamos primeiro provar que a convergência em Wp implica a convergência fraca e a
convergência dos momentos. Fixado um ponto x0 ∈ X , note que

Mp(µn) =

ˆ
X
dpX (x, x0)dµn(x) =W p

p (µn, δx0
).

Logo, a desigualdade triangular implica que∣∣∣Mp(µn)
1/p −Mp(µ)

1/p
∣∣∣ = |Wp(µn, δx0)−Wp(δx0 , µ)| ≤Wp(µn, µ) −−−−→

n→∞
0,

o que implica a convergência dos momentos.
Para provar a convergência fraca, recorde para que uma sequência (µn)n∈N convirja fracamente

para µ, é suficiente provar que
ˆ
X
fdµn −−−−→

n→∞

ˆ
X
fdµ para toda função Lipschitz f . Para uma

sequência (µn)n∈N convergindo para µ em Wp, usando a fórmula de dualidade de Kantorovitch-
Rubistein e o fato de que W1 ≤Wp, temos que∣∣∣∣ˆ

X
fdµn −

ˆ
X
fdµ

∣∣∣∣ = Lip(f)W1(µn, µ) ≤ Lip(f)Wp(µn, µ) −−−−→
n→∞

0.

A convergência fraca segue.
Para provar a afirmação conversa, trataremos primeiro o caso onde as medidas µn e µ são

concentradas em um conjunto limitado K. Nesse caso, pela Proposição 4.1.2, as distâncias Wp e
W1 são equivalentes em P(K). Logo basta provar que W1(µn, µ) −−−−→

n→∞
0.

Seja uma sequência (fn)n∈N de funções 1-Lipschitz ótimas para a formulação dual deW1(µn,mu).
Podemos assumir sem perda de generalidade que fn(x0) = 0 para um ponto fixo x0 ∈ K. Dessa
forma, as funções fn são 1-Lipschitz e uniformemente limitadas em K, logo pelo Teorema de
Ascoli-Arzelà, existe uma subsequência (fnk

)k∈N convergindo uniformemente para uma função f
1-Lipschitz.

Disso, segue que

W1(µnk
, µ) =

ˆ
X
fnk

dµnk
−
ˆ
X
fnk

dµ

=

ˆ
X
fdµnk

−
ˆ
X
fdµ︸ ︷︷ ︸

−−−−→
k→∞

0

+

ˆ
X
(fnk

− f)dµnk
−
ˆ
X
(fnk

− f)dµ︸ ︷︷ ︸
≤2∥fnk

−f∥∞
−−−−→
k→∞

0

.

O primeiro termo converge para 0 pela convergência fraca, enquanto que o segundo converge para
0 pela convergência uniforme de fnk

para f . Logo, a subsequência W1(µnk
, µ) converge para 0.

Repetindo esse argumento para qualquer subsequência de µn, temos que toda subsequência admite
uma nova subsequência que converge para µ na distância W1. Segue da propriedade de Urysohn
que toda a sequência W1(µn, µ) converge para 0.

Usando a desigualdade Wp(µn, µ) ≤ CW1(µn, µ)
1/p, o mesmo vale para Wp(µn, µ).

No caso geral, considere um ponto x0 ∈ X e defina a sequência de medidas não negativas dada
por

σn
def.
= (1 + dpX (·, x0))µn, σ

def.
= (1 + dpX (·, x0))µ.
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Pelo teorema de Portmanteau, segue que σn −−−−⇀
n→∞

σ pois para todo conjunto aberto A, é fácil
de verificar que σ(A) ≤ lim infn→∞ σn(A). Dado um ε > 0, tome um compacto K ⊂ X tal que
σn(X \K), σ(X \K) < ε. Consideremos agora

µK,n
def.
= µn K + (1− µn(K))δx0

, µK
def.
= µ K + (1− µ(K))δx0

.

Assumindo sem perdas de generalidade que x0 ∈ K, temos que as medidas µK,n e µK são concen-
tradas em K.

Também pelo teorema de Portmanteau, podemos provar que µK,n −−−−⇀
n→∞

µK . De fato, para
todo conjunto aberto A, se x0 ∈ A, temos que

µK(A) = µ(A ∩K) + (1− µ(K)) = µ(A ∪ (X \K))

≤ lim inf
n→∞

µn(A ∪ (X \K))

= lim inf
n→∞

µK,n(A).

Se x0 /∈ A, temos uma estimação análoga.
Dessa forma, aplicando a desigualdade triangular, temos que

Wp(µn, µ) ≤Wp(µn, µK,n) +Wp(µK,n, µK) +Wp(µK , µ).

O termo do meio converge para 0 pela primeira parte da prova, já que as medidas são concentradas
em K e µK,n −−−−⇀

n→∞
µK . Para estimar os outros termos, consideremos apenas Wp(µ, µK), que pode

ser estimado com o plano de transporte simples dado por

γK
def.
= (id, id)♯(µ K) + (id, x0)♯(µ X \K).

Disso, segue que

W p
p (µ, µK) ≤

ˆ
X×X

dpX (x, y)dγK(x, y) =

ˆ
X\K

dpX (x, x0)dµ(x)

≤ σ(X \K) < ε.

Concluímos então que

lim sup
n→∞

Wp(µn, µ) ≤ 2ε+ lim sup
n→∞

Wp(µK,n, µK) = 2ε.

Como ε > 0 é arbitrário, a prova está concluída.

Observação 4.3.1. Note na prova anterior que quando as medidas são concentradas em um con-
junto limitado, a convergência fraca já implica a convergência em Wp. Isso se explica pelo fato de
que dpX (·, x0) ∈ Cb(K).

Exercício 4.2. Assim como no Exercício 4.1, a prova do Teorema 4.3.1 é muito mais simples
quando o espaço ambiente X é Rd. Por quê? Refaça essa prova nesse caso.
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4.4 A lei dos grandes números de Glivenko-Cantelli
Com os resultados que já conhecíamos sobre a convergência estreita de medidas de probabilidade,
podemos demonstrar a lei dos Grandes Números de Glivenko-Cantelli para medidas empíricas, tam-
bém conhecido como o Teorema fundamental da estatística, que incrementa a lei forte dos grandes
números para variáveis aleatórias reais. Por outro lado, usando a caracterização de convergência
na distância Wp, também podemos provar convergência em Wp com probabilidade 1.

Primeiramente, estabelecemos o seguinte Lema, que fornece um conjunto enumerável de funções
teste, que implica a convergência estreita. Do mesmo jeito que diminuímos o conjunto Cb(X )
para o conjunto Lipb(X ) para verificar a convergência estreita de uma sequência de medidas de
probabilidade, podemos diminuir esse conjunto de funções teste ainda mais para um conjunto
enumerável.

Lema 4.4.1 (Separador enumerável para a topologia estreita). Seja X um espaço polonês. Então
existe uma família enumerável de funções Lipschitz F ⊂ Lip(X ) tal que uma sequência (µn)n∈N −−−−⇀

n→∞
µ se, e somente se ˆ

X
fdµn →

ˆ
X
fdµ para toda f ∈ F .

Demonstração. Podemos construir o conjunto F com funções construídas como: sejam D um sub-
conjunto denso e enumerável de X e f da forma

f(x) = inf
{
qi + pidX (x, y) ∧ 1 : qi, pi ∈ Q ∩ [−1, 1] for i = 1, . . . , N

y ∈ D , N ∈ N
}
.

Proposição 4.4.1 (Lei dos Grandes Números de Glivenko-Cantelli para medidas empíricas). Seja
(Ω,F ,P) um espaço de probabilidade, e seja (Xi)i∈N uma sequência de variáveis aleatórias indepen-
dentes e identicamente distribuídas, com valores em X e lei µ ∈ P(X ). Defina a medida empírica

µN
def.
=

1

N

N∑
i=1

δXi
.

Então, Wp(µn, µ) −−−−→
n→∞

0 P-quase certamente.

Demonstração. Pelo resultado anterior, existe um conjunto enumerável de funções F para o qual
verificar a convergência das integrais já garante a convergência estreita das medidas. Assim, para
cada f ∈ F , temos que (f(Xi))i∈N é uma sequência i.i.d. de variáveis aleatórias. Por outro lado

ˆ
X
fdµN =

1

N

N∑
i=1

f(Xi)

é a média de variáveis independentes e identicamente distribuídas com esperança E[f(X1)] =ˆ
X
fdµ. Pela Lei Forte dos Grandes Números, para cada f ∈ F , existe um conjunto Ωf de P-

probabilidade 1 onde

1

N

N∑
i=1

f(Xi(ω)) −−−−→
N→∞

ˆ
X
fdµ para todo ω ∈ Ωf .
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Como F é enumerável, o conjunto Ω
def.
=

⋂
f∈F

Ωf tem probabilidade 1, portanto a convergência

quase certamente vale simultaneamente para todo f ∈ F . Pelo resultado anterior, isso implica
µN −−−−⇀

N→∞
µ quase certamente.

Similarmente, a função x 7→ dpX (x, x0) ∈ L1(µ), já que µ ∈ Pp(X ), logo também segue da lei
dos grandes números que

Mp(µN ) =
1

N

N∑
i=1

dpX (Xi, x0) −−−−→
N→∞

E [dpX (X1, x0)] =Mp(µ)

em um conjunto de P-probabilidade 1.
Tomando a interseção dos conjuntos de probabilidade 1 referentes à convergência dos momentos

e associados à cada f ∈ F , ainda temos um conjunto de probabilidade 1, e nesse conjunto, pela
caracterização de convergência na distância de Wasserstein, temos que Wp(µN , µ) −−−−−→

N→+∞
0.


