
Capítulo 3

Existência de Mapas de Transporte
ótimo

Nesse capítulo, retornamos à formulação de Monge e estudaremos a existência e propriedades de
mapas de transporte ótimo, ou seja a existência de minimisantes para o problema de Monge. Re-
cordamos que a motivação principal para introduzir a formulação de Kantorovitch é a dificuldade
em aplicar o método direto do cálculo das variações para a formulação de Monge. Isso é uma estra-
tégia frequente no cálculo das variações; quando o método direto falha, procuramos uma relaxação
semi-contínua inferiormente do problema para a qual o método direto é eficaz, e em seguida usamos
as condições de otimalidade para identificar situações onde as soluções dessa relaxação correspon-
dem na verdade à soluções do problema original. No contexto do problema de Kantorovitch, as
condições de otimalidade que nos premitirão voltar ao problema de Monge é justamente a teoria
de c-monotonicidade cíclica desenvolvida no último capítulo. Nesse capítulo vamos discutir como
explorar essa teoria quando os espaços X e Y são (subconjuntos de) Rd.

3.1 Consequências da c-monotonicidade cíclica
Recordemos o problema de Kantorovitch: dado um custo c : Rd × Rd 7→ R ∪ {+∞} e µ, νP(Rd)
consideramos

min
γ∈Π(µ,ν)

ˆ
Rd×Rd

cdγ = sup
φ⊕ψ≤c

ˆ
Rd

φdµ+

ˆ
Rd

ψdν, (3.1)

onde a igualdade é a dualidade de Kantorovitch já provada. Nesse capítulo vamos supor sempre
que o mínimo é atingido, para isso basta supor por exemplo que

ˆ
Rd×Rd

cdµ⊗ ν < +∞,

logo existe um plano de transporte ótimo, assim como o supremo que define o problema dual,
existem potenciais ótimos de Kantorovitch (φ,ψ).

Sabemos do Teorema 2.3.1 que para γ-quase todo ponto (x, y) ∈ supp γ, vale que

φ(x) + ψ(y) = c(x, y). (3.2)
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Assumindo regularidade o suficiente dos potenciais de Kantorovitch, podemos diferenciar ambos os
lados dessa equação com respeito à x enquanto mantemos y fixo. Dessa forma, temos que

∇φ(x) = ∇xc(x, y). (3.3)

Assumindo que y 7→ ∇xc(x, y) é invertível, o ponto y será necessariamente dado por

y = (∇xc(x, ·))−1
(∇φ(x)). (3.4)

A inversibilidade de ∇xc(x, ·) é uma consequência, por exemplo, da hipótese conhecida como con-
dição de torção

detD2
x,yc(x, y) ̸= 0.

Um caso mais simples, e importante é quando c(x, y) = h(x − y), onde h : Rd → R é uma função
estritamente convexa. Vamos provar à frente que se h é estritamente convexa, então seu gradiente
∇h está bem definido em L d-quase todo ponto de Rd.1

O mesmo cálculo de antes nesse caso nos dá

x− y = (∇h)−1
(∇φ(x)).

O caso mais simples, e talvez o mais importante, é o custo quadrático quando c(x, y) = 1
2 |x− y|2.

Neste caso, obtemos o teorema de Brenier, que afirma que a aplicação de transporte ótimo é dada
por

T = id−∇φ = ∇u, (3.5)

e u é uma função convexa.
De modo geral, podemos definir uma aplicação

T
def.
= id− (∇h)−1

(∇φ), (3.6)

com a qual obtemos heuristicamente a seguinte propriedade: assumindo que o gradiente ∇φ é bem
definido, para quase todo ponto (x, y) ∈ supp γ, segue que y = T (x).

Portanto, para provar a existência de um mapa de transporte ótimo precisamos ou provar que
os potenciais de Kantorovitch são muito regulares, por exemplo C 1 para que os gradientes estejam
sempre bem definidos, ou ao menos balancear alguma regularidade mais fraca dos potenciais de
Kantorovitch com hipóteses sobre a medida de partida µ para que a aplicação T definida em (3.6)
seja bem definida em µ-quase todo ponto.

No caso mais simples do custo quadrático, a primeira alternativa é diretamente ligada à questão
de continuidade do transporte ótimo 2, que além de ser consideravelmente mais difícil, é falsa em
situações muito razoáveis, como aprendemos desde o contra-exemplo proposto por Caffarelli.

A segunda alternativa requer explorar a regularidade que obtemos diretamente da teoria de
c-monotonicidade cíclica, onde os potenciais herdam frequentemente a regularidade Lipschitz do
custo c ou são funções convexas. Nesses casos podemos provar com os teoremas de Rademacher
e/ou de Alexandrov que garante a existência do gradiente em L d-quase todo ponto.

1Na verdade, o conjunto onde ele não está definido é uma união enumerável de superfícies C 1 de dimensão d− 1.
Chamamos isso de um conjunto (d− 1)-rectifiável.

2Note que φ de ordem C 1 implicaria um mapa de transporte contínuo.
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3.2 Diferenciabilidade de funções convexas

No capítulo 2 nós vimos que funções convexas sempre admitem uma noção mais fraca de gradiente,
os subgradientes, que se tornam o conjunto

∂f(x) = {p : f(y) ≥ f(x) + ⟨p, y − x⟩ para todo y} ,

sempre que f é uma função convexa. Esse conjunto é não vazio ∂f(x) ̸= ∅ sempre que x ∈ dom f .

Exercício 3.1. Prove que se ∂f(x) é um conjunto unitário, se e somente se, o gradiente ∇f(x)
existe e ∂f(x) = {∇f(x)}.

Agora vamos ver que ∇f(x) está bem definido para L d-quase todo ponto x ∈ Rd. Para isso
vamos usar o teorema de Rademacher para funções Lipschitz. Lembramos que f : U → R, onde U
é um subconjunto aberto de Rd, é Lipschitz quando existe uma constante L tal que

|f(x)− f(y)| ≤ L|x− y|.

Por outro lado, Lip(f) denote a menor constante tal que essa desigualdade é verdadeira. Uma função
f : Rd → R é localmente Lipschitz quando f é Lipschitz em todo conjunto aberto e limitado.

Teorema 3.2.1. Se f é localmente Lipschitz, então o gradiente ∇f(x) existe para L d-quase todo
ponto x ∈ Rd.

Nosso objetivo é mostrar que toda função convexa é localmente Lipschitz no interior de seu
domínio, e portanto é diferenciável em quase todo ponto. Isso é uma consequência direta da
convexidade.

Teorema 3.2.2. Seja f : Rd → R ∪ {+∞}. Então as seguintes afirmações valem

1. f é localmente limitada em seu domínio;

2. f é localmente Lipschitz em seu domínio;

3. f é diferenciável em L d-quase todo ponto.

Demonstração. Seja um cubo Q ⊂ dom f . Se os vértices do cubo são dados por (vi)
2d

i=1, então todo
ponto x ∈ Q pode ser escrito como uma combinação convexa dos vértices, ou seja

x =

2d∑
i=1

λivi,

e da convexidade de f segue que

f(x) = f

 2d∑
i=1

λivi

 ≤
2d∑
i=1

λif(vi).

Escolha M def.
= maxi=1,...2d f(vi). Segue que f é localmente limitada.
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Agora vamos provar que para todo x0 int dom f , f é limitada inferiormente em alguma bola
Br(x0). Suponha que esse não seja o caso e, para todo n ∈ N, suponha que exista um ponto
xn ∈ B1/n(x0) tal que f(xn) ≤ −n. Tome yn

def.
= x0 − (xn − x0), de modo que

xn, yn ∈ B1/n(x0) e x0 =
1

2
(xn + yn).

Para n suficientemente grande B1/n(x0) está contido no cubo Q da parte anterior da prova. Desse
modo, da convexidade de f teríamos que

f(x0) ≤
1

2
f(xn) +

1

2
f(yn) ≤

M − n

2
−−−−−→
n→+∞

−∞,

o que contradiz o fato de que f(x0) é um valor finito. Dessa forma, deve existir algum r > 0 e
m ≥ 0 tal que f ≥ −m em Br(x0).

Dado um cubo Q ⊂ int dom f tal que −m ≤ f ≤ M pelo item precedente, considere uma bola
de raio 2R tal que B2R ⊂ Q. Dados x, y ∈ BR, escolha z def.

= x+ t(y − x), e tome t suficientemente
grande para que z ∈ ∂B2R. Dessa forma

t =
|z − x|
|y − x|

> 1,

pois como x, y, z são colineares, e podemos escrever y = t−1z + (1 − t−1)x, se t ≤ 1, teríamos que
z ∈ BR. Nós obtemos então pela convexidade de f que

f(y) ≤ f(x) +
1

t
(f(z)− f(x))

≤ f(x) +
M +m

R
|y − x|.

Logo f é localmente Lipschitz e segue do teorema de Rademacher que ∇f(x) está bem definido em
L d quase todo ponto.

3.3 O teorema de Brenier
Vamos agora estudar o teorema de Brenier sobre a existência de aplicações de transporte ótimo
para o custo quadrático

c(x, y) =
1

2
|x− y|2.

Note que dadas duas medidas de probabilidade µ, ν ∈ P(Rd) e um plano de transporte γ ∈ Π(µ, ν),
temos que

0 ≤
ˆ
Rd×Rd

1

2
|x− y|2dγ =

1

2

ˆ
Rd

|x|2dµ+
1

2

ˆ
Rd

|y|2dν −
ˆ
Rd×Rd

⟨x, y⟩ dγ.

Portanto para que o valor do problema de Kantorovitch associado tenha valor finito, é necessário e
suficiente que os momentos de ordem 2 de µ e ν sejam finitos, M2(µ),M2(ν) < +∞. Dessa forma,
convém definir o subconjunto

P2(Rd)
def.
=
{
µ ∈ P(Rd) :M2(µ) < +∞

}
, onde M2(µ)

def.
=

1

2

ˆ
Rd

|x|2dµ. (3.7)
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Como as quantidades
1

2

ˆ
Rd

|x|2dγ(x, y) são constantes e iguais à M2(µ) para todo γ ∈ Π(µ, ν),

e de forma análoga para a segunda marginal, o problema de Kantorovitch para o custo quadrático
é equivalente à formulação de máxima correlação

T (µ, ν)
def.
= max

γ∈Π(µ,ν)

ˆ
Rd×Rd

⟨x, y⟩ dγ(x, y) = min
u convexa

ˆ
Rd

u(x)dµ+

ˆ
Rd

u∗(y)dν. (3.8)

Exercício 3.2. Prove que para todo par de medidas µ, ν ∈ P2(Rd) a formulação em máxima
correlação é equivalente à formulação em termos de distância de Wasserstein

W 2
2 (µ, ν)

def.
= min

γ∈Π(µ,ν)

ˆ
Rd×Rd

1

2
|x− y|2dγ = max

φ

ˆ
Rd

φdµ+

ˆ
Rd

φcdν, (3.9)

com c = 1
2 |x− y|2.

Apesar de as formulações (3.8),(3.9) serem equivalentes, vamos ver que a formulação em máxima
correlação é ligeiramente mais conveniente para provar o teorema de Brenier devido à sua relação
com funções convexas. O primeiro resultado para isso é o seguinte, que pode ser formulado mesmo
em espaços poloneses, sobre planos de transporte concentrados em gráficos.

Dados dois espaços poloneses X ,Y, dizemos que um conjunto Γ ⊂ X × Y é um gráfico se para
todo par x ∈ X , existe no máximo um y ∈ Y tal que (x, y) ∈ Γ. Note que é perfeitamente possível
que para um dado x, não exista nenhum y com essa propriedade.

Proposição 3.3.1. Dados dois espaços poloneses X ,Y, suponha que γ ∈ P(X × Y) seja tal que
(πX )♯γ = µ, e existe um gráfico Γ ⊂ X × Y tal que γ é concentrado em Γ. Então existe uma
aplicação T : X → Y tal que γ = (id, T )♯µ.

Demonstração. Como γ é concentrado em Γ, e é uma medida de Radon, existe um conjunto boreli-
ano Γ1 ⊂ Γ tal que γ(X ×Y \ Γ1) = 0. Logo, como toda medida de Radon é regular interiormente,
e Γ1 é boreliano, existe uma sequência de conjuntos compactos (Kk)k∈N encaixados e tais que
γ
(
X × Y \

⋃
k∈NKk

)
= 0.

Seja agora Ck
def.
= (πX )(Kk) e defina Tk : Ck → Y, onde para cada x ∈ Ck, Tk(x) é o único ponto

de Y tal que (x, Tk(x)) ∈ Kk. Vamos observar algumas propriedades das aplicações Tk. Primeiro
note que, como Ck são uma família crescente de conjuntos compactos, se i < k, então Ci ⊆ Ck e
segue que Tk|Ci = Ti.

Além disso, note que Tk é contínuo em Ck para todo k ∈ N. De fato, como Kk é um conjunto
compacto, seja uma sequência (xn)n∈N ⊂ Ck tal que xn → x. Desse modo (xn, yn = Tk(xn))n∈N ⊂
Kk, e por compacidade toda subsequência de (xn, yn) admite uma subsequência tal que (xni

, yni
) →

(x, y) ∈ Kk. Como Kk é um subconjunto do gráfico Γ, existe um único y ∈ Y tal que (x, y) ∈ Kk,
e portanto y = Tk(x). Como toda subsequência admite uma nova subsequência convergente, pela
propriedade de Urysohn, concluímos que Tk(xn) → Tk(x).

Podemos então definir uma aplicação global, observando que

µ

(
X \

⋃
k∈N

Ck

)
= γ

(
X × Y \

⋃
k∈N

Kk

)
= 0.

Logo, fixemos um ponto y0 ∈ Y qualquer, e podemos definir a aplicação de Borel T : X → Y como

T (x)
def.
=

{
Tk(x), se x ∈ Ck,

y0, se x ∈ X \
⋃
k∈N Ck.
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Para concluir a prova, note que para toda função contínua e limitada φ ∈ Cb(X ×Y), temos que
φ(x, y) = φ(x, T (x)) para (x, y) ∈ Kk. Dessa forma, pelo teorema da convergência monótona

ˆ
X×Y

φdγ = lim
k→∞

ˆ
Kk

φdγ = lim
k→∞

ˆ
Ck

φ(x, T (x))dµ =

ˆ
X
φ(x, T (x))dµ.

Disso concluímos que γ = (id, T )♯µ e o resultado segue.

Esse resultado pode ser usado de forma abstrata, ou seja, não é necessário conhecer uma aplica-
ção que defina o gráfico Γ, basta ser capaz de definir o gráfico Γ de forma abstrata como uma relação
de teoria de conjuntos, e o seu ponto positivo é que ele fornece automaticamente uma aplicação de
transporte mensurável, por isso ele é particularmente importante nas generalizações do Teorema de
Brenier que vamos provar em seguida. No entanto, no caso do custo euclidiano quadrático, ou na
formulação de máxima correlação, a teoria de c-monotonicidade cíclica implica que a aplicação de
transporte construída é o gradiente de uma função convexa, que é automaticamente mensurável.

Teorema 3.3.1. Sejam duas medidas de probabilidade µ, ν ∈ P2(Rd), tais que µ≪ L d.

1. O problema de Kantorovitch na forma de máxima correlação (3.8) admite um único plano de
transporte ótimo γ ∈ Π(µ, ν), enquanto que a formulação dual admite maximisadores dado
por um par de funções convexas (φ,φ∗), que é único módulo a soma de uma constante, como
elemento de L1(µ). Além disso, o plano de transporte ótimo assume a forma γ = (id,∇φ)♯µ.

2. Conversamente, se φ é uma função convexa, s.c.i., e diferenciável em µ quase todo ponto tal
que |∇φ| ∈ L2(µ), então T def.

= ∇φ é sempre ótimo para o transporte de µ à (∇φ)♯µ.

3. Assuma também que ν ≪ L d, então o mapa de transporte ótimo de µ para ν é dado por
Tµ→ν = ∇φ, enquanto o mapa de ν para µ é dado por Tν→µ = ∇φ∗ e nós temos que

Tν→µ ◦ Tµ→ν = id µ-q.t.p. em Rd, Tµ→ν ◦ Tν→µ = id ν-q.t.p. em Rd. (3.10)

Demonstração. Começando pelo item (1), se γ é um plano de transporte ótimo entre µ e ∋, note
pelo teorema 2.3.1 que existem potenciais ótimos da forma (φ,φ∗) tais que γ é concentrada no
conjunto

Γ
def.
= {(x, y) : φ(x) + φ∗(y) = ⟨x, y⟩} = {(x, y) : y ∈ ∂φ(x)} .

Segue então que γ é tal que

γ(Γ) = 1, com Γ
def.
=
{
(x, y) ∈ Rd × Rd : y ∈ ∂φ(x)

}
.

Por outro lado, definindo os conjuntos

Γ0
def.
=
{
(x, y) ∈ Rd × Rd : y∈∂φ(x)

não existe ∇φ(x)

}
, Γ1

def.
= Γ \ Γ0.

Por outro lado, temos que

γ(Γ0) ≤ γ
(
{x : não existe ∇φ(x)} × Rd

)
= µ ({x : não existe ∇φ(x)}) = 0,

pois µ≪ L d e toda função convexa é diferencial em L d-quase todo ponto.
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Temos então que, para todo par de conjuntos borelianos A,B3

γ(A×B) = γ ({(x, y) ∈ A×B} ∩ Γ1) = γ ({(x,∇φ(x)) ∈ A×B} ∩ Γ1)

= γ
(
(id,∇φ)−1(A×B)× Rd

)
= µ

(
(id,∇φ)−1(A×B)

)
= (id,∇φ)♯µ(A×B).

Segue que γ = (id,∇φ)♯µ.
Para obter a unicidade, note que se existirem dois planos de transporte ótimo γ1 e γ2, pelos

argumentos à cima, temos que γi = (id,∇φi)♯µ, onde φ1, φ2 são funções convexas. Mas então
podemos construir um novo plano de transporte ótimo

γ̄
def.
=

γ1 + γ2
2

,

que por sua vez será da forma γ̄ = (id,∇φ̄)♯µ. Mas pela construção, este novo plano só pode
ser induzido por uma aplicação de transporte se ∇φ1 = ∇φ2 em µ quase todo ponto. Segue que
γ1 = γ2.

Suponha agora que existem dois potenciais de Kantorovitch φ1, φ2, tais que ∥φ1 − φ2∥L1(µ) > 0.
Pelos argumentos anteriores, isso gera dois mapas de transporte ótimo Ti = ∇φi para i = 1, 2. Mas
pelo argumento anterior temos que ∇(φ1 − φ2) = 0 para µ-quase todo ponto. Portanto φ1 e φ2

divergem no máximo de uma constante no suporte de µ.
Consideremos agora a afirmação conversa no item 2. Assumindo que µ≪ L d e que ∇φ ∈ L2(µ),

defina ν def.
= (∇φ)♯µ, de forma que

M2(ν) =
1

2

ˆ
Rd

|∇φ|2dµ < +∞.

Dessa forma o problema de Kantorovitch admite um único plano de transporte ótimo. Além disso,
como µ ≪ L d, definindo γ def.

= (id,∇φ)♯µ, segue da construção que para γ-quase todo par (x, y)
temos que y = ∇φ(x) e segue do case de igualdade da identidade de Fenchel que

φ(x) + φ∗(y) = ⟨x, y⟩ .

Pelo teorema 2.3.1, segue que φ é um potencial de Kantorovitch e que γ definido como à cima é
ótimo para o transporte de µ à ν.

Para provar o item (3), como µ ≪ L d existe um único plano de transporte ótimo γ = γµ→ν =
(id, Tµ→ν)♯µ ∈ Π(µ, ν). Por outro lado, inverter as marginais de um plano de transporte preserva o
custo de transporte por conta de simetria. Isso pode ser atingido através da aplicação i : (x, y) 7→
(y, x). Desse modo, se γ ∈ Π(µ, ν), definindo o plano invertido γinv

def.
= i♯γ ∈ Π(ν, µ)4, temos que

ˆ
⟨x, y⟩dγ(x, y) =

ˆ
⟨x′, y′⟩ dγinv(x

′, y′).

3Outra forma de ver isso é argumentando que para toda função f ∈ Cb(Rd × Rd) temos queˆ
Rd×Rd

f(x, y)dγ(x, y) =

ˆ
Γ1

f(x, y)dγ(x, y) =

ˆ
Rd×Rd

f(x,∇φ(x))dγ(x, y) =

ˆ
Rd×Rd

f(x,∇φ(x))dµ(x).

Não é claro qual argumento é o mais elementar.
4Verifique que γinv ∈ Π(ν, µ).
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Dessa forma, γν→µ
def.
= i♯γµ→ν é o único plano ótimo para o transporte de ν à µ. Além disso,

como ν ≪ L d, devemos ter que γν→µ = (id, Tν→µ)♯ν, e portanto, γµ→ν = i♯γν→µ = (Tν→µ, id)♯ν.
Isso significa que o único plano de transporte ótimo γ ∈ Π(µ, ν) é tal que

γ = (id, Tµ→ν)♯µ = (Tν→µ, id)♯ν. (3.11)

No que diz respeito aos potenciais de Kantorovitch, note também por simetria que se (φ,φ∗)
são ótimos para o transporte de µ à ν, então (φ∗, φ) são ótimos para o transporte de ν à µ. Isso
quer dizer que Tµ→ν = ∇φ e Tν→µ = ∇φ∗.

Finalmente, para concluir com a propriedade de inversão entre os mapas de transporte (3.10)
note que para toda função mensurável f = f(x, y) vale que

ˆ
f(x, y)dγ =

ˆ
f(x, Tµ→ν(x))dµ(x) =

ˆ
f(Tν→µ(y), y)dν(y).

Escolhendo f(x, y) = |y − Tµ→ν(x)|, temos que

0 =

ˆ
f(x, Tµ→ν(x))dµ(x) =

ˆ
|y − Tµ→ν ◦ Tν→µ(y)|dν(y),

o que significa que Tµ→ν ◦ Tν→µ = id em ν-quase todo ponto de Rd. De forma análoga, provamos
a identidade recíproca para µ e o resultado segue.


