Capitulo 3

Existéncia de Mapas de Transporte
6timo

Nesse capitulo, retornamos a formulagao de Monge e estudaremos a existéncia e propriedades de
mapas de transporte 6timo, ou seja a existéncia de minimisantes para o problema de Monge. Re-
cordamos que a motivagao principal para introduzir a formulagao de Kantorovitch é a dificuldade
em aplicar o método direto do calculo das variacoes para a formulacdo de Monge. Isso é uma estra-
tégia frequente no céalculo das variagoes; quando o método direto falha, procuramos uma relaxagao
semi-continua inferiormente do problema para a qual o método direto é eficaz, e em seguida usamos
as condicoes de otimalidade para identificar situagoes onde as solugoes dessa relaxagao correspon-
dem na verdade & solucoes do problema original. No contexto do problema de Kantorovitch, as
condigoes de otimalidade que nos premitirao voltar ao problema de Monge é justamente a teoria
de c-monotonicidade ciclica desenvolvida no tltimo capitulo. Nesse capitulo vamos discutir como
explorar essa teoria quando os espagos X’ e ) sdo (subconjuntos de) R4,

3.1 Consequéncias da c-monotonicidade ciclica

Recordemos o problema de Kantorovitch: dado um custo ¢ : R? x R? s R U {+oc} e pu, v 2 (R?)
consideramos

min / cdy = sup / edu + Pdv, (3.1)
~yeII(p,v) Rd xRd p®Yp<cJRrd Rd

onde a igualdade é a dualidade de Kantorovitch ja provada. Nesse capitulo vamos supor sempre
que o minimo é atingido, para isso basta supor por exemplo que

/ cdp @ v < 400,
R4 xR¢

logo existe um plano de transporte 6timo, assim como o supremo que define o problema dual,
existem potenciais 6timos de Kantorovitch (¢, ).
Sabemos do Teorema 2.3.1 que para -y-quase todo ponto (z,y) € supp~y, vale que

p(x) +9(y) = clz,y). (3-2)
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40 CAPITULO 3. EXISTENCIA DE MAPAS DE TRANSPORTE OTIMO

Assumindo regularidade o suficiente dos potenciais de Kantorovitch, podemos diferenciar ambos os
lados dessa equagao com respeito & x enquanto mantemos y fixo. Dessa forma, temos que

V(x) = Vac(z,y). (3.3)

Assumindo que y — V c(z,y) é invertivel, o ponto y serd necessariamente dado por

y = (Voelz, ) (Ve(2)). (3-4)

A inversibilidade de V ¢(z,-) é uma consequéncia, por exemplo, da hipotese conhecida como con-
di¢ao de tor¢do
det Diﬁyc(;v, y) # 0.

Um caso mais simples, e importante ¢ quando ¢(x,y) = h(z — y), onde h : R? — R ¢ uma func¢do
estritamente convexa. Vamos provar & frente que se h é estritamente convexa, entao seu gradiente
Vh esta bem definido em .Z%-quase todo ponto de R%.!

O mesmo calculo de antes nesse caso nos da

z—y=(Vh) " (Ve(x)).

O caso mais simples, e talvez o mais importante, é o custo quadratico quando ¢(x,y) = %\x —y)?.
Neste caso, obtemos o teorema de Brenier, que afirma que a aplicagao de transporte 6timo é dada
por

T =id — Vyp = Vu, (3.5)

e u é uma fungao convexa.
De modo geral, podemos definir uma aplicacao

T id — (V) 1 (Vy), (3.6)

com a qual obtemos heuristicamente a seguinte propriedade: assumindo que o gradiente Vi é bem
definido, para quase todo ponto (z,y) € supp~, segue que y = T'(x).

Portanto, para provar a existéncia de um mapa de transporte 6timo precisamos ou provar que
o0s potenciais de Kantorovitch sdo muito regulares, por exemplo ¢! para que os gradientes estejam
sempre bem definidos, ou ao menos balancear alguma regularidade mais fraca dos potenciais de
Kantorovitch com hipoteses sobre a medida de partida p para que a aplicagdo T' definida em (3.6)
seja bem definida em p-quase todo ponto.

No caso mais simples do custo quadratico, a primeira alternativa é diretamente ligada & questao
de continuidade do transporte 6timo 2, que além de ser consideravelmente mais dificil, é falsa em
situagoes muito razoéveis, como aprendemos desde o contra-exemplo proposto por Caffarelli.

A segunda alternativa requer explorar a regularidade que obtemos diretamente da teoria de
c-monotonicidade ciclica, onde os potenciais herdam frequentemente a regularidade Lipschitz do
custo ¢ ou sdo fungbes convexas. Nesses casos podemos provar com os teoremas de Rademacher
e/ou de Alexandrov que garante a existéncia do gradiente em .#%-quase todo ponto.

1Na verdade, o conjunto onde ele ndo esta definido é uma unido enumeravel de superficies €1 de dimensdo d — 1.
Chamamos isso de um conjunto (d — 1)-rectifiavel.
2Note que ¢ de ordem %! implicaria um mapa de transporte continuo.
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3.2 Diferenciabilidade de funcoes convexas

No capitulo 2 nés vimos que fungoes convexas sempre admitem uma nogao mais fraca de gradiente,
os subgradientes, que se tornam o conjunto

Of (@) ={p: f(y) = f(z) + (p,y — ) para todo y},
sempre que f é uma fungao convexa. Esse conjunto é nao vazio df(x) # () sempre que x € dom f.

Exercicio 3.1. Prove que se df(z) é um conjunto unitario, se e somente se, o gradiente V f(z)

existe e Of (z) = {Vf(z)}.

Agora vamos ver que V f(z) esta bem definido para .Z%-quase todo ponto x € R?. Para isso
vamos usar o teorema de Rademacher para fun¢des Lipschitz. Lembramos que f: U — R, onde U
¢ um subconjunto aberto de R?, é Lipschitz quando existe uma constante L tal que

|f (@) = f(y)| < L]z —yl.

Por outro lado, Lip(f) denote a menor constante tal que essa desigualdade é verdadeira. Uma fungéo
f: R4 = R é localmente Lipschitz quando f é Lipschitz em todo conjunto aberto e limitado.

Teorema 3.2.1. Se f ¢ localmente Lipschitz, entdo o gradiente ¥V f(z) existe para £ ?-quase todo
ponto x € RY.

Nosso objetivo é mostrar que toda funcao convexa é localmente Lipschitz no interior de seu
dominio, e portanto é diferenciavel em quase todo ponto. Isso é uma consequéncia direta da
convexidade.

Teorema 3.2.2. Seja f : R? — RU {+o0}. Entdo as sequintes afirmagées valem
1. f € localmente limitada em seu dominio;
2. f € localmente Lipschitz em seu dominio;

3. f € diferencidvel em £%-quase todo ponto.

~ . . ~ 24 -
Demonstragdo. Seja um cubo  C dom f. Se os vértices do cubo sao dados por (v;);_,, entdo todo
ponto x € @ pode ser escrito como uma combinagao convexa dos vértices, ou seja

2d
T = E Aivia
1=1

e da convexidade de f segue que

Escolha M max;_; oa f(vs). Segue que f é localmente limitada.
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Agora vamos provar que para todo zgintdom f, f é limitada inferiormente em alguma bola
B, (zp). Suponha que esse nao seja o caso e, para todo n € N, suponha que exista um ponto

Tn € By/p(x0) tal que f(z,) < —n. Tome y, = 29 — (zn, — x0), de modo que

1
TnsYn € Bl/n('rO) €Ty = i(xn + yn)

Para n suficientemente grande B/, (2o) esta contido no cubo @) da parte anterior da prova. Desse
modo, da convexidade de f teriamos que

M—n
— —0o0,
2 n—+00

flz0) < 3 F(a) + 35 um) <

o que contradiz o fato de que f(xo) é um valor finito. Dessa forma, deve existir algum r > 0 e
m >0 tal que f > —m em B, ().

Dado um cubo @ C intdom f tal que —m < f < M pelo item precedente, considere uma bola
de raio 2R tal que Bor C Q. Dados x,y € Bg, escolha z ot t(y — x), e tome t suficientemente
grande para que z € dBsog. Dessa forma

|z -2
A

t

pois como z,y, z sdo colineares, e podemos escrever y =t~z + (1 —t~ 1)z, se t < 1, terfamos que
z € Bgr. Nos obtemos entao pela convexidade de f que

F(w) < 5(@) + 5 (F() = 7))

M+m
< @)+ Sy ol
Logo f é localmente Lipschitz e segue do teorema de Rademacher que V f(z) est4 bem definido em
Z¢ quase todo ponto. O

3.3 O teorema de Brenier

Vamos agora estudar o teorema de Brenier sobre a existéncia de aplicagoes de transporte 6timo
para o custo quadratico
1 2
c(z,y) = gle —yl"

Note que dadas duas medidas de probabilidade u, v € Z(R?) e um plano de transporte v € II(u, v),
temos que

1 1 1
0< / gl —yffdy = 5/ |2 dp + 5/ ly[*dv —/ (z,y) dy.
R xR Rd R4 Rd xR4

Portanto para que o valor do problema de Kantorovitch associado tenha valor finito, é necessario e
suficiente que os momentos de ordem 2 de p e v sejam finitos, Ms(u), Ma(v) < 4+o00. Dessa forma,
convém definir o subconjunto

def. def. ]-
PR = {pe PRY) : My(p) < +oo}, onde Ma(p) = 5/ |z 2dp. (3.7)
Rd
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1
Como as quantidades 3 / |z|2d7(z,y) sdo constantes e iguais & My(u) para todo v € TI(u, v),
R4

e de forma analoga para a segunda marginal, o problema de Kantorovitch para o custo quadratico
é equivalente & formulacao de mdzima correlagio

T(u,v) = max / (x,y)dy(z,y) = min / u(x)du+/ u* (y)dv. (3.8)
YEI(,v) JRd xRd u convexa Jpd R

Exercicio 3.2. Prove que para todo par de medidas p,v € Z5(R?) a formulagdo em méaxima

correlagao é equivalente & formulagao em termos de distancia de Wasserstein

of. . 1
W2(u,v) =  min / —|z —yPdy = max/ edu + / ©ed, (3.9)
YEI(u,v) JRd xRd 2 ¢ JRrd Rd

com ¢ = 1|z —y|.

Apesar de as formulagdes (3.8),(3.9) serem equivalentes, vamos ver que a formula¢do em maxima
correlagao é ligeiramente mais conveniente para provar o teorema de Brenier devido & sua relagao
com fungoes convexas. O primeiro resultado para isso é o seguinte, que pode ser formulado mesmo
em espagos poloneses, sobre planos de transporte concentrados em graficos.

Dados dois espagos poloneses X', ), dizemos que um conjunto I' C X x Y é um grafico se para
todo par z € X, existe no maximo um y € Y tal que (z,y) € I'. Note que é perfeitamente possivel
que para um dado x, nao exista nenhum y com essa propriedade.

Proposicao 3.3.1. Dados dois espagos poloneses X,Y, suponha que v € P(X x V) seja tal que
(Fx)ﬁ’y = u, e existe um grdfico ' C X x Y tal que v € concentrado em I'. Entdo eziste uma
aplicagao T : X — Y tal que v = (id, T)ﬁ,u.

Demonstragao. Como ~ é concentrado em I'; e ¢ uma medida de Radon, existe um conjunto boreli-
ano I'y C T tal que y(X x Y\ I'1) = 0. Logo, como toda medida de Radon é regular interiormente,
e I'y é boreliano, existe uma sequéncia de conjuntos compactos (Kk)k;eN encaixados e tais que
v (X x Y\ Upen Kx) =0.

def

Seja agora C, ‘= (mx)(Kk) e defina Ty, : Cy, — Y, onde para cada x € Cy, Ty (x) é o tnico ponto
de Y tal que (x,Tx(z)) € Kj. Vamos observar algumas propriedades das aplicagdes Tj. Primeiro
note que, como C} sao uma familia crescente de conjuntos compactos, se ¢ < k, entao C; C Cy e
segue que Ty

Além disso, note que Ty, é continuo em C} para todo k € N. De fato, como K} é um conjunto
compacto, seja uma sequéncia (), C C tal que x,, — 2. Desse modo (2, yn = Ti(24)),cn C
K}, e por compacidade toda subsequéncia de (z, y,,) admite uma subsequéncia tal que (Zy,, yn,) —
(z,y) € K. Como K}, é um subconjunto do grafico I', existe um tnico y € Y tal que (z,y) € K,
e portanto y = T (z). Como toda subsequéncia admite uma nova subsequéncia convergente, pela
propriedade de Urysohn, concluimos que Ty (2, ) — Tik(x).

Podemos entao definir uma aplicacao global, observando que

u(X\UCk>:7<X><y\UKk>:O.

keN keN

c, =T;.

Logo, fixemos um ponto yy € Y qualquer, e podemos definir a aplicacao de Borel T': X — ) como

T(2) aer. | Ti(x), sex € C,
Y0, se £ € X\ Upen Cr-
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Para concluir a prova, note que para toda fungao continua e limitada ¢ € %, (X x }), temos que
o(x,y) = o(x,T(z)) para (z,y) € Kj. Dessa forma, pelo teorema da convergéncia mondtona

/ pdy = lim/ pdy = lim so(x,T(x))du=/ ¢z, T(x))dp.

Disso concluimos que v = (id, T)u,u e o resultado segue. O

Esse resultado pode ser usado de forma abstrata, ou seja, ndo é necesséario conhecer uma aplica-
¢ao que defina o grafico I', basta ser capaz de definir o grafico I' de forma abstrata como uma relagao
de teoria de conjuntos, e o seu ponto positivo é que ele fornece automaticamente uma aplicagao de
transporte mensuravel, por isso ele é particularmente importante nas generalizagoes do Teorema de
Brenier que vamos provar em seguida. No entanto, no caso do custo euclidiano quadrético, ou na
formulacao de méaxima correlacdo, a teoria de c-monotonicidade ciclica implica que a aplicacao de
transporte construida é o gradiente de uma funcao convexa, que é automaticamente mensuravel.

Teorema 3.3.1. Sejam duas medidas de probabilidade p,v € P5(RY), tais que p < L.

1. O problema de Kantorovitch na forma de mdzima correlagao (3.8) admite um unico plano de
transporte étimo v € Il(u,v), enquanto que a formulagcdo dual admite mazimisadores dado
por um par de fungdes convezas (p,p*), que € inico mddulo a soma de uma constante, como
elemento de L'(u1). Além disso, o plano de transporte étimo assume a forma v = (id, Vgo)ﬁ,u.

2. Conversamente, se ¢ € uma fun¢ao conveza, s.c.i., e diferencidvel em p quase todo ponto tal
que |Vo| € L*(n), entio T = Vi € sempre timo para o transporte de p a (Veo)yh.

3. Assuma também que v < L%, entio o mapa de transporte étimo de p para v é dado por

T—v = Vi, enquanto o mapa de v para p € dado por T,_,, = V* e nds temos que

TyopoTysy =id p-q.t.p. em RY, TysvoT,, =id v-q.t.p. em R?. (3.10)

Demonstragao. Comegando pelo item (1), se v é um plano de transporte 6timo entre p e 3, note
pelo teorema 2.3.1 que existem potenciais 6timos da forma (¢, ¢*) tais que v é concentrada no
conjunto

L= {(2,y) : o) + 0" () = (r,9)} = {(z,9) 1 y € dp(x)} .

Segue entao que «y é tal que
y(T) =1, com T = {(z,y) € RExRE:y e dp(z)} .
Por outro lado, definindo os conjuntos

I {(x,y) cRéxRY: _ vEoP(@) } . DT,

nao existe Vo(z)
Por outro lado, temos que
v(To) < 7 ({z : ndo existe Vp(z)} x RY) = pu ({z : ndo existe V(z)}) = 0,

pois < Z? e toda funcio convexa é diferencial em . %-quase todo ponto.
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Temos entdo que, para todo par de conjuntos borelianos A, B3

Y(Ax B) =~ {(z,y) € Ax B}NT1) = v({(z, Vp(z)) € Ax B} NT)

=7
=7 ((id, Vo) (A x B) x RY) = 1 ((id, V) "' (A x B))
= (id, V)yu(A x B).

Segue que v = (id, Vi), p1.

Para obter a unicidade, note que se existirem dois planos de transporte 6timo 1 e 2, pelos
argumentos a cima, temos que v; = (id, chi)ﬁu, onde 1,2 sao fungdes convexas. Mas entao
podemos construir um novo plano de transporte 6timo

5, def. Y1+ Y2
2 b

que por sua vez serd da forma ¥ = (id,V@)ﬁu. Mas pela construgao, este novo plano sé pode
ser induzido por uma aplicagao de transporte se Vi1 = Vo em p quase todo ponto. Segue que
Y1 =72

Suponha agora que existem dois potenciais de Kantorovitch o1, @2, tais que || — @QHLl(u) > 0.
Pelos argumentos anteriores, isso gera dois mapas de transporte 6timo 7; = Vy; para i = 1,2. Mas
pelo argumento anterior temos que V(g1 — ¢2) = 0 para p-quase todo ponto. Portanto ¢; e g
divergem no maximo de uma constante no suporte de p.

Consideremos agora a afirmacao conversa no item 2. Assumindo que p < 2% e que Vi € L?(p),

defina v = (V)yp, de forma que

1
My(v) = - /]Rd |Vo2dp < +oo.

2
Dessa forma o problema de Kantorovitch admite um tnico plano de transporte 6timo. Além disso,
como p < %, definindo v = (id, Vg@)ﬁu, segue da construgdo que para y-quase todo par (z,y)
temos que y = Vp(x) e segue do case de igualdade da identidade de Fenchel que

o(z) +¢*(y) = (z,9) .

Pelo teorema 2.3.1, segue que ¢ é um potencial de Kantorovitch e que v definido como & cima é
6timo para o transporte de pu a v.

Para provar o item (3), como p < £? existe um tinico plano de transporte 6timo vy = Vs =
(id, TMH,,)ﬁ u € TI(p, v). Por outro lado, inverter as marginais de um plano de transporte preserva o
custo de transporte por conta de simetria. Isso pode ser atingido através da aplicagdo i : (z,y) —
(y,z). Desse modo, se y € II(i,v), definindo o plano invertido i, = iyy € (v, p)?, temos que

/<fc7y> dy(z,y) =/<w’»y’> Dyiny (2", 9).

30utra forma de ver isso é argumentando que para toda fungio f € %, (R¢ x R%) temos que

Lo i@y = [ fenaen= [ s@eenen= [ e eene.

xR

Nao é claro qual argumento é o mais elementar.
Verifique que Yiny € (v, ).
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def. . . .. s N 2 .
Dessa forma, v, = i47,—v € 0 Unico plano 6timo para o transporte de v a p. Além disso,

como v < Z%, devemos ter que Voosp = (id,Tl,_m)uz/, e portanto, Yu—u = i4Yv—op = Loy, id)uu
Isso significa que o tnico plano de transporte 6timo v € II(u, v) é tal que

v = (id, Ty )ypt = (Tyop, id) v (3.11)

No que diz respeito aos potenciais de Kantorovitch, note também por simetria que se (¢, ¢*)
s@o Otimos para o transporte de p & v, entdo (p*, ¢) sdo 6timos para o transporte de v & u. Isso
quer dizer que T),_,, = Vyp e T, = Vy*.

Finalmente, para concluir com a propriedade de inversdo entre os mapas de transporte (3.10)
note que para toda fun¢do mensuravel f = f(z,y) vale que

/fxyd’y /f Ty (z))dp( /f vou(y), y)dr(y).

Escolhendo f(z,y) = |y — T ()|, temos que

0= [ 1o Tumn@)ne) = [ Iy =T o Tty

o que significa que 1},—,, o T,_,,, = id em v-quase todo ponto de R?. De forma analoga, provamos
a identidade reciproca para p e o resultado segue. O



