
Capítulo 2

Dualidade de Kantorovitch
Rubinstein

Nesse capítulo vamos discutir um dos resultados mais fundamentais da teoria de transporte ótimo, a
dualidade de Kantorovitch-Rubinstein. Como anteriormente, ao longo desse capítulo vamos assumir
que (X , dX ) e (Y, dY) são espaços Poloneses. Então dados c : X ×Y → R s.c.i., tal que o problema
de Kantorovitch tem valor finito para duas distribuiçōes de probabilidade µ ∈ P(X ), ν ∈ P(Y), a
dualidade de Kantorovitch afirma que

min
γ∈Π(µ,ν)

ˆ
X×Y

cdγ = sup
φ⊕ψ≤c

φ∈Cb(X ), ψ∈Cb(Y)

ˆ
X
φdµ+

ˆ
Y
ψdν, (2.1)

onde a operação ⊕ : Cb(X )× Cb(Y) → Cb(X × Y) é definida como φ⊕ ψ(x, y)
def.
= φ(x) + ψ(y).

Além de ter um significado matemático profundo através da teoria mais geral de dualidade em
análise e otimização convexa, esse resultado também tem uma interpretação econômica muito rica,
um dos motivos pelos quais Kantorovitch ganhou o prêmio Nobel da economia.

Considere a seguinte situação: µ representa a distribuição de padarias numa cidade que pro-
duzem pão, enquanto que ν representa a distribuição de cafés da mesma que geram a demanda
pelo pão produzido pelas padarias. Dessa forma c(x, y) representa o custo de levar uma unidade
de pão da padaria x ao café y. O problema de Kantorovitch, também chamado o problema primal,
representa portanto o custo total de transporte minímo que um consórcio entre padarias e cafés
pagaria para atender toda a demanda de pão, enquanto exaurindo a produção, assumindo que estas
estão em equilíbrio e não há excedente de produção.

No supremo do lado direito, o problema dual, a quantidade φ(x) representa portanto o quanto
uma transportadora deve cobrar de uma padaria x para retirar uma unidade de pão, enquanto que
ψ(y) representa o preço de entrega de uma unidade de pão no café y. A restrição φ(x) + ψ(y) ≤
c(x, y) significa que a transportadora não pode cobrar mais que o custo de transporte individual
c(x, y) da padaria x e do café y juntos, pois se esse fosse o caso, o consórcio de cafés e padarias
poderia efetuar o transporte por um custo melhor que a transportadora.

O leitor atento percebeu que o problema dual foi escrito como um sup, enquanto que o pro-
blema primal costumamos escrever como um min. Isso é por que nem sempre podemos demonstrar
a existência de potenciais ótimos φ,ψ, pelo menos não em Cb(X ),Cb(Y). Um objetivo importante
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22 CAPÍTULO 2. DUALIDADE DE KANTOROVITCH RUBINSTEIN

desse capítulo será obter condições que garantam existência de um par (φ,ψ) que maximize tam-
bém o problema dual, os chamados potenciais de Kantorovitch. Dado um par de potenciais de
Kantorovitch (φ,ψ), se γ é um plano de transporte ótimo, vamos demonstrar que a condição

φ(x) + ψ(y) = c(x, y) para γ-quase todo par (x, y) (2.2)

é necessária e suficiente para a otimalidade de γ. Essa relação significa que o problema dual fornece
uma precificação do serviço de transporte que atinge o equilíbrio do mercado.

Agora suponha que o potencial ψ está fixo, uma forma muito natural de escolher um φ de forma
que este par seja admissível, ou seja, φ⊕ ψ ≤ c, é definir o que chamamos de a transformada c

ψc(x)
def.
= inf

y∈Y
c(x, y)− ψ(y), de formas que ψc ⊕ ψ ≤ c. (2.3)

Assim como a transformada c̄

φc̄(y)
def.
= inf

x∈X
c(x, y)− φ(x), de formas que φ⊕ φc̄ ≤ c. (2.4)

Toda essa discussão é válida para uma classe de custos c bem ampla, mas o berço dessa teoria
começou com o caso X = Y = Rd e

c(x, y) = −x · y,

que aparece sem perda de generalidade da escolha c(x, y) = 1
2 |x − y|2. Nesse caso o problema de

Kantorovitch e seu dual são reescritos como

max
γ∈Π(µ,ν)

ˆ
X×Y

x · ydγ = inf
φ⊕ψ≥x·y

ˆ
X
φdµ+

ˆ
Y
ψdν. (2.5)

Nessa variante a noção de transformada-c se torna a transformada de Legendre definida como

f∗(p) = sup
x∈Rd

x · p− f(x), (2.6)

um objeto central da análise e otimização convexa.
Por conta disso, nessa capítulo vamos fazer um detour do nosso objetivo inicial de estudar

o problema dual de Kantorovitch para entender algumas ferramentas de análise convexa, onde a
transformada de Legendre será o objeto central que também nos servirá mais adiante. Um dos
jeitos mais simples e clássicos de demonstrar a dualidade é um exercício de análise convexa, que
se tornará um exercício para o leitor. Infelizmente essa prova só funciona em espaços métricos
compactos, logo uma vez construídas essas ferramentas, vamos voltar à transformada-c, que pode
ser vista como uma generalização da transformada de Legendre.

2.1 Um pouco de análise convexa
Nessa sessão vamos estudar as propriedades de funções convexas num espaço Banach geral X, ou
seja um espaço vetorial normado e completo. Seja um conjunto C ⊂ X, dizemos que C é convexo
sempre que, dados quaisquer dois pontos de C, a reta conectando-os está contida em C, ou seja
para todo t ∈ (0, 1)

tx+ (1− t)y ∈ C para todos x, y ∈ C.
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Os principais exemplos de espaços de Banach que podemos citar são

C0(X ) e Mb(X ).

O primeiro, o conjunto das funções contínuas que convergem para zero no infinito, definidas em um
espaço Polonês X é completo pelo fato de que o limite uniforme de funções contínuas é também uma
função contínua. Caso o leitor não esteja familiarizado com este fato, ele é fortemente encorajado
à prová-lo.

Exercício 2.1. Seja uma sequência (fn)n∈N ⊂ C (X ) que converge uniformemente para f , ou seja

∥fn − f∥∞ = sup
x∈X

dX (fn(x), f(x)) −−−−→
n→∞

0.

Então f é contínua.

Como consequência, o espaço das medidas de Radon finitas sobre X , Mb(X ), também é um
espaço de Banach, pois é o espaço dual de um espaço vetorial normado.1 O fato de que Mb(X ) =
C0(X )⋆ é um espaço de Banach portanto é completamente independente de C0(X )⋆ o ser, pois todo
espaço dual é completo. Falando de conjuntos convexos, já cruzamos um muito relevante para o
nosso estudo:

Exercício 2.2. Prove que P(X ) é um subconjunto convexo de Mb(X ). Prove que o conjunto
Π(µ, ν) de planos de transporte com marginais fixas é convexo.

Uma função f : X → R ∪ {+∞} é dita convexa se o seu domínio

domf def.
= {x ∈ X : f(x) < +∞}

é um conjunto convexo, e para todo t ∈ (0, 1) vale que

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) para todos x, y ∈ X.

Por outro lado, uma função f é dita côncava se −f é convexa. Nesse caso o domínio de uma função
côncava é dado por domf def.

= {x ∈ X : f(x) > −∞} ainda deve ser convexo e a desigualdade oposta
é satisfeita: para todo t ∈ (0, 1) vale que

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y) para todos x, y ∈ X.

Por outro lado, uma função é dita estritamente convexa (resp. côncava) se as desigualdades à cima
são estritas. No seguinte exercício o leitor é convidado à verificar diversas propriedades de funções
convexas.

Exercício 2.3. Sejam X um espaço de Banach e f : X → R ∪ {+∞} uma função.

• Prove que se f é estritamente convexa, semi-contínua inferiormente e não é f ≡ +∞, então
f admite um único minimizante.

• Uma função f é convexa se, e somente se, seu epígrafo é convexo.
1Com esses dois exemplos os leitor já percebe que, para os nossos objetivos, não basta desenvolver a teoria em

dimensão finita.
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• Uma função f é convexa se, e somente se, para todos x, y ∈ X a função sobre [0, 1] dada por
t 7→ f(tx+ (1− t)y) é convexa.

• Considere uma família arbitrária de funções convexas (fα)α∈Λ, então

f(x)
def.
= sup

α∈Λ
fα(x)

é uma função convexa.

• Seja C ⊂ X um conjunto fechado e convexo não vazio. Defina as funções indicatrizes (no
sentido da análise convexa) e suporte de C, χC e σC respectivamente. Enquanto χC : X →
R∪{+∞} é definida sobre X, a função suporte é definida sobre o dual σC : X⋆ → R∪{+∞}:

χC(x)
def.
=

{
0, x ∈ C,

+∞, se não,
σC(p)

def.
= sup

x∈C
⟨p, x⟩ = sup

x∈X
⟨p, x⟩ − χC(x).

Prove que σC e χC são convexas.

O fato fundamental que permite o desenvolvimento da análise convexa é a versão geométrica
do teorema de Hahn-Banach, que garante a existência de um hiperplano que separe um conjunto
convexo de um ponto exterior a ele.

Teorema 2.1.1 (Hahn-Banach Geométrico). Seja X um espaço de Banach, C ⊂ X um conjunto
fechado, convexo, não vazio e x0 ∈ X \ C. Então, existe p ∈ X∗ e α ∈ R tais que

⟨p, x⟩ ≤ α < ⟨p, x0⟩ para todo x ∈ C.

Demonstração. A prova segue da versão analítica do Teorema de Hahn-Banach, aplicada ao funci-
onal de Minkowski. Primeiro note que à menos de uma translação do espaço podemos assumir que
0 ∈ intK, o que não muda a conclusão pois esta será baseada em um funcional linear. Definimos
então o funcional de Minkowski

pK(x)
def.
= inf{α : α−1x ∈ K,α > 0}.

Temos as seguintes propriedades:

1. pK(x) ≥ 0 para todo x ∈ X;

2. pK(λx) = λpK(x) para todo λ > 0 e x ∈ X;

3. pK(x+ y) ≤ pK(x) + pK(y) para todo x, y ∈ X;

4. existe M tal que pK(x) ≤M ∥x∥ para todo x ∈ X;

5. K = {x ∈ X : pK(x) ≤ 1}.

O leitor é convidado a provar essas propriedades.
Com o objetivo de aplicar a forma analítica do teorema de Hahn-Banach seja Y = Rx0 e

g(tx0) = t. Segue então que g ≤ p em Y . De fato,

• t ≤ 0 então g(tx0) = t ≤ 0 ≤ pK(tx0)
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• t > 0 então
t

α
x0 ̸∈ K para todo α ≥ 1 pois x0 /∈ K. Na verdade, como dist(x0,K) > 0, temos

ainda que pK(tx0) > t = g(tx0).

Logo o teorema de Hahn-Banach garante a existência de um funcional linear contínuo p ∈ X⋆ tal
que p|Y = g e p ≤ pK em X. Segue então que para todo x ∈ K

⟨p, x⟩ ≤ pK(x) ≤ 1 < g(x0) = ⟨p, x0⟩ .

Concluímos que o hiperplano {⟨p, x⟩ = 1} separa estritamente K e x0.

De modo geral, esse teorema de separação funciona também quando estamos lidando com um
espaço vetorial topológico localmente convexo, isto é um espaço vetorial munido de uma topologia
tal que toda vizinhança possui sub-vizinhanças convexas. Esse é justamente o caso do conjunto das
medidas de Radon finitas Mb(X ) em um espaço polonês X , munido da topologia estreita.2 Logo,
de modo geral podemos usar os teoremas de separação de conjuntos convexos com o produto de
dualidade (M (X ),Cb(X )) induzido pela topologia estreita.

Desse resultado central serve de fundamento para diversos resultados da análise convexa, in-
clusive outras versões mais robustas de teoremas de separação. Nós estamos particularmente in-
teressados na teoria de dualidade para problemas de otimização convexa, cujo objeto central é a
transformada de Legendre. No exercício 2.3, nos deparamos com o primeiro exemplo de transfor-
mada de Legendre com as funções indicatriz e suporte de um conjunto convexo. De modo geral,
podemos definir a transformada de Legendre para uma classe bem mais ampla de funções

Γ0(X)
def.
=
{
f : X → R ∪ {+∞} : f é convexa, s.c.i.

e própria, f ̸≡ +∞

}
.

Dada f ∈ Γ0(X), a sua transformada de Legendre também é uma função f∗ ∈ Γ0(X
⋆) definida

como
f∗(p) = sup

x∈X
⟨p, x⟩ − f(x).

Um resultado imediato da definição é a chamada desigualdade de Fenchel : para todo x ∈ X e
p ∈ X⋆, vale

f(x) + f∗(p) ≥ ⟨p, x⟩ .
De fato, como f∗(p) = supy∈X ⟨p, y⟩ − f(y), basta tomar y = x no supremo para obter a desigual-
dade.

Em alguns casos, essa desigualdade se torna uma igualdade, isto é, existe (x, p) tal que

f(x) + f∗(p) = ⟨p, x⟩ .

No caso em que X = Rd e f ∈ C 1, a condição de otimalidade do supremo definindo f∗(p) é dada
por p−∇f(x) = 0. Escolhendo esses pares de valores conjugados (x,∇f(x)), temos a identidade

f(x) + f∗(∇f(x)) = ⟨∇f(x), x⟩ .

Assim, a desigualdade de Fenchel se torna uma igualdade nos pontos de contato entre f e o plano
tangente definido pelo gradiente. Isso sugere que, no caso não diferenciável, o papel do gradiente
deve ser desempenhado por um conjunto de vetores que realizam esse contato. Isso motiva o estudo
das propriedades de diferenciabilidade de funções convexas. Em todo ponto de seu domínio podemos
dar uma noção de derivada direcional.

2Ver “Elements of Mathematics: Topological vector spaces, Chapters 1 to 5”, Bourbaki, capítulo 2.



26 CAPÍTULO 2. DUALIDADE DE KANTOROVITCH RUBINSTEIN

Lema 2.1.1. Seja f : X → R∪{+∞} uma função convexa e s.c.i. sobre um espaço de Banach X.
Se x0 ∈ int(dom f) então a derivada direcional está bem definida para todo v ∈ X. Isto é, o limite

f ′(x0; v) = lim
t↓0

f(x0 + tv)− f(x0)

t
= inf
t>0

f(x0 + tv)− f(x0)

t

existe está bem definido.

Demonstração. Como x0 ∈ int(dom f) existe ρ > 0 tal que Bρ(x0) ⊂ dom f (bola aberta de raio
ρ). Logo, fixando v ∈ X para t suficientemente pequeno x0 + tv ∈ dom f e portanto a expressão

f(x0 + tv)− f(x0)

t

está bem definida, vamos provar que ela é monótona. Isso implica que o limite existe e o resultado
segue.

Pela convexidade de f e o exercício 2.3, t 7→ φ(t)
def.
= f(x + tv) é uma função convexa. Logo

tome 0 < s < t e seja α = s/t < 1, de formas que s = αt+ (1− α)0. Pela convexidade de φ temos

φ(s) ≤ αφ(t) + (1− α)φ(0)

φ(s)− φ(0) ≤ α(φ(t)− φ(0))

φ(s)− φ(0)

s
≤ φ(t)− φ(0)

t
.

Portanto o limite unilateral existe e é igual ao ínfimo pela monotonicidade.

Sabemos bem que a existência de derivadas direcionais não garante a diferenciabilidade da
função. Vamos ver no próximo capítulo que isso é verdade em quase todo ponto para funções
convexas, mas isso não é o bastante para estudar problemas de otimização convexa pois muitas
vezes é justamente no ponto de não diferenciabilidade que precisamos obter informação, por isso
introduzimos a noção de subdiferencial, que por ser uma noção mais fraca de diferenciabilidade,
promete resultados mais gerais para a existência de sub-gradientes.

Definição 2.1.1 (Subdiferencial). Seja f ∈ Γ0(X). O subdiferencial de f no ponto x ∈ X é o
conjunto

∂f(x)
def.
=
{
p ∈ X⋆ : f(y) ≥ f(x) + ⟨p, y − x⟩ ∀ y ∈ X

}
.

Os elementos de ∂f(x) são chamados de subgradientes de f em x.

Note que:

• Se f é diferenciável em x, então ∂f(x) = {∇f(x)}.

• Em geral, os elementos de ∂f(x) são exatamente os planos de suporte ao gráfico de f no ponto
(x, f(x)).

Proposição 2.1.1 (Subdiferencial não vazio em pontos interiores). Seja f : X → R ∪ {+∞} uma
função convexa e s.c.i. sobre um espaço de Banach X. Se x0 ∈ int(dom f) então ∂f(x0) ̸= ∅.
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Demonstração. Aplicando o Lemma 2.1.1 sobre a existência de derivadas direcionais em x0 ∈
int dom f , podemos definir o funcional linear e contínuo

φ : X ∋ v 7→ φ(v) = f ′(x0; v),

que é sublinear pela convexidade de f (i.e. φ(λv) = λφ(v) para λ ≥ 0 e φ(v + w) ≤ φ(v) + φ(w)).
Pelo teorema de Hahn–Banach para funcionais sublineares, existe p ∈ X⋆ tal que

⟨p, v⟩ ≤ φ(v) para todo v ∈ X.

Da definição de φ como infimo para t > 0 segue que, para todo v e todo t > 0,

⟨p, v⟩ ≤ f(x0 + tv)− f(x0)

t
,

isto é f(x0 + tv) ≥ f(x0) + t⟨p, v⟩. Tomando y = x0 + tv e variando t > 0, v ∈ X obtemos

f(y) ≥ f(x0) + ⟨p, y − x0⟩ para todo y ∈ X,

o que mostra p ∈ ∂f(x0). Portanto ∂f(x0) ̸= ∅.

Observação 2.1.1. A hipótese x0 ∈ int(dom f) é essencial: em pontos de fronteira do domínio o
subdiferencial pode ser vazio.

Para as funções convexas e s.c.i., a transformada de Legendre é um operador involutivo, em
outras palavras, definindo o biconjugado f∗∗ como

f∗∗(x)
def.
= sup

p∈X⋆

⟨p, x⟩ − f∗(p),

o teorema de Moreau nos diz que f∗∗ = f para tais funções.

Teorema 2.1.2 (Teorema de Moreau). Seja f ∈ Γ0(X). Então f∗∗ = f .

Demonstração. A desigualdade f∗∗ ≤ f é imediata da definição de f∗. Fixemos x ∈ dom f ,
tomando o supremo dentre todos os p ∈ X⋆ na desigualdade de Fenchel, temos que

f(x) ≥ sup
p∈X⋆

⟨p, x⟩ − f∗(p) = f∗∗(x).

Vamos agora provar a desigualdade inversa, que f ≤ f∗∗. Como f é uma função convexa, o seu
epígrafo

epi(f) def.
= {(x, t) ∈ dom f × R : t ≥ f(x)}

é também um conjunto convexo. Fixemos então um ponto x0 tal que f(x0) < +∞.
Dessa forma, para todo ε > 0 o ponto (x0, f(x0) − ε) ̸∈ epi(f). Pela forma geométrica do

Teorema de Hahn-Banach, existe um hiperplano que separa estritamente epi(f) e (x0, f(x0) − ε).
Ou seja, existem p ∈ X∗, α, β tais que

⟨p, x⟩+ αf(x) ≥ β > ⟨p, x0⟩+ α(f(x0)− ε),

para todo x ∈ dom(f). Tomando x = x0 do lado esquerdo, concluímos que α deve ser estritamente
positivo. Logo, dividindo ambos os lados por α podemos assumir sem perda de generalidade que
α = 1.
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Tomando q = −p, temos que para todo x ∈ epi(f)

⟨q, x⟩ − f(x) ≤ −β,

o que implica, tomando o supremo em x ∈ X, que

f∗(q) = sup
x∈X

⟨q, x⟩ − f(x) ≤ −β < ⟨q, x0⟩ − f(x0) + ε.

Reorganizando os temos e tomando o supremo em q, obtemos que

f(x0)− ε ≤ sup
q∈X∗

⟨q, x0⟩ − f∗(q) = f∗∗(x0).

Como ε > 0 era arbitrário, o resultado segue.

Estes resultados fornecem as ferramentas necessárias para abordarmos a dualidade de Kantoro-
vich, primeiro no caso compacto como aplicação direta, e depois no caso geral através da teoria de
c-convexidade.

2.2 Dualidade via Convexidade
Podemos agora propor uma prova elementar da dualidade de Kantorovicht utilizando as ferramentas
de análise convexa desenvolvidas. Nosso objetivo é de introduzir as ideias principais nesse caso mais
simples, para depois desenvolvermos a teoria completa usando a noção de monotonicidade c-cíclica.

Vamos chamar o problema de minimização em termos de planos de transporte de problema
primal,

min
γ∈Π(µ,ν)

ˆ
X×Y

c(x, y)dγ(x, y), (P)

enquanto o problema de maximização em termos de funções potenciais de problema dual

sup
φ⊕ψ≤c

φ∈C (X ),ψ∈C (Y)

ˆ
X
φ(x)dµ(x) +

ˆ
Y
ψ(y)dν(y). (D)

O nosso objetivo então é provar que min (P) = max (D), e que ambos os problemas admitem
soluções. Chamamos de dualidade fraca a desigualdade mais fácil de se obter pelo procedimento
chamado de dualização das restrições que consiste em reescrever a função indicatriz χΠ(µ,ν) na sua
forma dual.

Lema 2.2.1. Dados dois espaços Poloneses X e Y e uma função custo c : X × Y → R ∪ {+∞},
para toda medida γ ∈ M+(X × Y) vale que

sup
φ∈Cb(X ),ψ∈Cb(Y)

(ˆ
X
φdµ+

ˆ
Y
ψdν −

ˆ
X×Y

φ⊕ ψdγ

)
= χΠ(µ,ν)(γ) =

{
0, se γ ∈ Π(µ, ν),

+∞, se não.

Como consequência disso, vale a dualidade fraca:

min (P) ≥ sup (D).
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Demonstração. Primeiramente note que se γ ∈ Π(µ, ν), então para todo par de funções φ ∈ Cb(X )
e ψ ∈ Cb(Y) vale

ˆ
X
φdµ+

ˆ
Y
ψdν −

ˆ
X×Y

φ⊕ ψdγ = 0

pois as marginais de γ são µ e ν. Portanto o supremo é igual a zero.
Se γ não tiver µ, ν como marginais, existe um par de funções (φ,ψ) tais que

ˆ
X
φdµ+

ˆ
Y
ψdν −

ˆ
X×Y

φ⊕ ψdγ > 0.

De fato, como as marginais não coincidem, deve existir um par (φ,ψ) tal que a diferença de integrais
à cima é não nula. Se essa diferença for positiva, tome esse par, se for negativa tome (−φ,−ψ).
Substituindo φ e ψ por λφ e λψ para λ > 0, e fazendo λ→ +∞ vemos que o supremo é infinito.

Passamos agora à prova da dualidade fraca. Com essa caracterização da função indicatriz
χΠ(µ,ν), temos que

inf (P) = inf
γ∈M+(X×Y)

ˆ
X×Y

cdγ + χΠ(µ,ν)(γ)

= inf
γ∈M+(X×Y)

sup
φ∈Cb(X ),ψ∈Cb(Y)

ˆ
X×Y

(c− φ⊕ ψ) dγ +

ˆ
X
φdµ+

ˆ
Y
ψdν

O supremo então domina essa mesma quantidade avaliada em qualquer par de funções (φ,ψ) fixadas,
e portanto para qualquer tal par temos

inf (P) ≥
ˆ
X
φdµ+

ˆ
Y
ψdν + inf

γ∈M+(X×Y)

ˆ
X×Y

(c− φ⊕ ψ) dγ. (2.7)

Temos então que estudar esse ínfimo em γ da mesma forma que fizemos na primeira parte para
χΠ(µ,ν). Se φ ⊕ ψ ≤ c, o integrando é não negativo e portanto o ínfimo é limitado inferiormente
por 0. Mas essa cota inferior pode ser facilmente atingida por γ ≡ 0, de forma que o ínfimo é 0.
Se não for o caso, podemos encontrar um ponto (x0, y0) tal que φ(x0) + ψ(y0) > c(x0, y0), e então
tomando γ = λδ(x0,y0) e fazendo λ→ +∞ vemos que o ínfimo é −∞. Portanto

inf
γ∈M+(X×Y)

ˆ
X×Y

(c− φ⊕ ψ) dγ =

{
0, se φ⊕ ψ ≤ c,

−∞, se não.

Voltando para (2.7), como o lado direito não depende de γ, temos que o inf do problema primal
majora o supremo do lado direito entre todas as funções φ,ψ. Mas veja que pelo argumento que
acabamos de realizar, esse supremo não muda se considerarmos apenas funções φ⊕ ψ ≤ c, pois se
não o lado direito é −∞ e a desigualdade é trivialmente satisfeita. Portanto

inf (P) ≥ sup
φ⊕ψ≤c

φ∈Cb(X ),ψ∈Cb(Y)

ˆ
X
φdµ+

ˆ
Y
ψdν = sup (D),

e a dualidade fraca segue.
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Vamos agora propor uma prova elementar da dualidade forte3, baseada no teorema de Moreau
da análise convexa. Para isso, tome X × Y localmente compactos, considere o funcional H :
C0(X × Y) 7→ R ∪ {+∞} definido como

H(p)
def.
= − sup

φ∈C0(X ),ψ∈C0(Y)

{ˆ
X
φdµ+

ˆ
Y
ψdν : φ⊕ ψ ≤ c− p

}
.

Dessa forma temos que H(0) = − sup (D), e a provando que H é convexa e s.c.i., podemos aplicar
o teorema de Moreau, na esperança que a relação H(0) = H∗∗(0) corresponda à dualidade forte.

Teorema 2.2.1. Sejam X e Y espaços poloneses localmente compactos e seja c : X×Y → R∪{+∞}
uma função custo semi-contínua inferiormente tal que inf (P) < +∞. Então as seguintes afirmações
são verdadeiras:

1. H é convexa e s.c.i. sobre Cb(X × Y), com respeito à convergência uniforme;

2. A transformada de Legendre de H é dada por

H∗(γ) = sup
p∈C0(X×Y)

⟨p, γ⟩ −H(p) =


ˆ
X×Y

c(x, y)dγ(x, y), se γ ∈ Π(µ, ν),

+∞, se não;

3. Temos dualidade forte.

Demonstração. (1) Para provar a convexidade de H, sejam p0, p1 ∈ Cb(X × Y) e t ∈ [0, 1]. Tome
pares (φi, ψi) admissíveis para H(pi), com i = 0, 1 e defina

(φt, ψt)
def.
= (1− t)(φ0, ψ0) + t(φ1, ψ1), pt

def.
= (1− t)p0 + tp1.

Logo temos que φt ⊕ ψt ≤ c− pt e, portanto,

−H(pt) ≥ (1− t)

[ˆ
X
φ0dµ+

ˆ
Y
ψ0dν

]
+ t

[ˆ
X
φ1dµ+

ˆ
Y
ψ1dν

]
.

Tomando o supremo sobre todos os pares admissíveis (φi, ψi) para i = 0, 1, primeiro para i = 0
depois para i = 1, segue a convexidade de H.

Para provar que H é s.c.i., seja pn
∥·∥∞−−−−→
n→∞

p. Fixemos ε > 0 arbitrário, e tome usando a definição
de supremo, um par φn ⊕ ψn ≤ c− pn tal que

ˆ
X
φndµ+

ˆ
Y
ψndν ≥ −H(pn)− ε.

Defina o novo par admissível (φ̄n, ψn) com φ̄n = φn − δn com δn = ∥pn − p∥∞, de formas que
φ̄n ⊕ ψn ≤ c− p. Logo ˆ

X
φ̄ndµ+

ˆ
Y
ψndν ≥ −H(pn)− ε− δn.

3Veja por exemplo “Optimal Transport for applied mathematicians”, sessão 1.6.3; note que na prova dessa refe-
rência, usamos a existência de potenciais de Kantorovitch em domínios compactos. O que não é feito aqui, mas a
ideia continua muito parecida.
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Dessa forma, (φ̄n, ψn) se torna admissível para H(p) e nós temos que

−H(p) ≥
ˆ
X
φ̄ndµ+

ˆ
Y
ψndν ≥ −H(pn)− ε− δn.

Tomando o lim inf quando n→ ∞ obtemos

H(p) ≤ lim inf
n→∞

H(pn) + ε.

Como ε > 0 era arbitrário, a semicontinuidade inferior de H segue.
(2) Vamos agora calcular a transformada de Legendre de H. Seja γ ∈ M+(X × Y), então

H∗(γ) = sup
p

⟨p, γ⟩ −H(p)

= sup
p

⟨p, γ⟩+ sup
φ⊕ψ≤c−p

ˆ
X
φdµ+

ˆ
Y
ψdν

= sup
p

⟨c, γ⟩+ sup
φ⊕ψ≤c−p

ˆ
X
φdµ+

ˆ
Y
ψdν −

ˆ
X×Y

(c− p)dγ

=


ˆ
X×Y

c(x, y)dγ(x, y), se γ ∈ Π(µ, ν),

+∞, se não,

onde a última igualdade segue do Lema 2.2.1 aplicado à medida γ.
(3) Finalmente, aplicando o teorema de Moreau, temos que

sup
φ⊕ψ

ˆ
X
φdµ+

ˆ
Y
ψdν = −H(0) = −H∗∗(0) = inf

γ∈Π(µ,ν)

ˆ
X×Y

cdγ,

e a dualidade forte segue.

Esse argumento, apesar de simples e geral, não nos fornece existência de potenciais de Kan-
torovich e que por sua vez, não podem ser empregados para extrair mais informação do plano de
transporte ótimo. Por outro lado, dado um par (φ,ψ) admissível, podemos reescrever as restrições
como: dado y ∈ Y devemos ter que

ψ(y) ≤ c(x, y)− φ(x) para todo x ∈ X ,

o que nos indica que o maior valor possível para ψ(y) deve ser dado pelo ínfimo das quantidades
a direita, e não menos do que isso. Isso motiva a definição de c-transformada, que é o análogo da
transformada de Legendre na teoria de transporte ótimo.

Definição 2.2.1 (c-Transformada). Sejam X , Y espaços poloneses e c : X × Y → R uma função
semi-contínua inferiormente. Dada φ : X → R∪{+∞}, a transformada-c de φ é a função φc : Y →
R ∪ {±∞} dada por

φc(y) = inf
x∈X

{c(x, y)− φ(x)} para todo y ∈ Y.

Por outro lado, a transformada c de uma função ψ : Y → R ∪ {+∞}, é a função ψc̄ : X →
R ∪ {±∞} dada por

ψc̄(x) = inf
y∈Y

{c(x, y)− ψ(y)} para todo x ∈ X .

Uma função ψ é dita c-côncava se existe φ tal que ψ = φc.
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A motivação para a definição de funções c-côncavas vem do teorema de Moreau da análise
convexa. De fato, uma consequência imediata desse teorema é que uma função φ é convexa se, e
somente se, ela é a transformada de Legendre de uma outra função.

As seguintes propriedades da transformada c seguem diretamente da definição.

Proposição 2.2.1. Sejam X e Y espaços poloneses. A seguintes propriedades são satisfeitas

1. Seja um par (φ,ψ) tal que φ⊕ ψ ≤ c, então ψ ≤ φc;

2. Se c ∈ Cb(X × Y) possui um módulo de continuidade, i.e.

|c(x, y)− c(x′, y′)| ≤ ωX (dX (x, x′)) + ωY(dY(y, y
′)),

então quaisquer funções c-côncavas ψc̄,φc tem módulos de continuidade ωX e ωY .

Demonstração. Propriedade (1) segue diretamente da definição. Para provar (2), considere y, y′ ∈
Y, dado ε > 0, pela definição da transformada c, deve existir x′ tal que

c(x′, y′)− φ(x′) ≤ φc(y′) + ε

Logo usando x′ no ínfimo que define φc(y) temos que

φc(y)− φc(y′) ≤ c(x′, y)− φ(x′)− (c(x′, y′)− φ(x′) + ε) = c(x′, y)− c(x′, y′) + ε

≤ ωY(dY(y, y
′)) + ε.

Fazendo ε→ 0 e trocando os papeis de y, y′, obtemos que

|φc(y)− φc(y′)| ≤ ωY(dY(y, y
′)).

O mesmo argumento mostra que o módulo de continuidade de ψc̄ é dado por ωX .

Usando esses dois resultados, junto de teoremas clássicos de compacidade de funções contínuas,
ou seja, o teorema de Ascoli-Arzelà.

Teorema 2.2.2 (Ascoli-Arzelà). Seja X um espaço polonês compacto. Um conjunto F ⊂ C (X )
fechado na topologia induzida pela convergência uniforme é sequencialmente compacto se, e somente
se

• F é equilimitada, i.e. existe C > 0 tal que ∥f∥∞ ≤ C para toda f ∈ F ;

• F é equicontínua, i.e. para todo ε > 0 existe δ tal que

se dX (x, y) < δ, então |f(x)− f(y)| ≤ ε.

Ou equivalentemente, existe um módulo de continuidade ω comum à todas as funções f ∈ F .

Com isso, podemos provar que existe um par de potenciais de Kantorovich (φ,ψ).

Exercício 2.4. Dados X e Y espaços Poloneses compactos e c uma função custo contínua. Prove
que existe um par de potenciais de Kantorovich (φ,ψ) tais que ψ = φc e φ é uma função c-côncava.
[Dica: Para aplicar o método direto, construa uma sequência maximizante equicontínua usando a
transformada c.]
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2.3 O caso geral: conjuntos c-ciclicamente monótonos
Na nossa intuição econômica anterior imagine o seguinte: dados um conjunto de fornecedores X e
um conjunto de consumidores Y, suponha que temos um plano de transporte γ que associa cada
fornecedor a um consumidor, e que esse plano é ótimo. Agora, considere uma troca cíclica entre
vários pares (xi, yi) no suporte de γ, onde cada fornecedor xi passa a fornecer para o consumidor
yi+1 (com yn+1 = y1). A variação do custo total de transporte nessas situações é dada por

n∑
i=1

c(xi, yi+1)−
n∑
i=1

c(xi, yi)

Se essa variação for estritamente positiva, então o plano original não seria ótimo. Portanto, para
qualquer ciclo de trocas, o custo total não pode diminuir. Isso motiva a seguinte definição:

Definição 2.3.1 (c-Monotonicidade Cíclica). Um conjunto Γ ⊂ X ×Y é c-ciclicamente monótono
se para todo n ∈ N e toda sequência finita {(xi, yi)}ni=1 ⊂ Γ, vale

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xi, yi+1),

onde convencionamos yn+1 = y1.

Para formalizar a intuição anterior nos diz que se γ é ótimo, então γ-quase todo par (x, y)
deve estar contido em um conjunto c-CM. No entanto, veja que essa intuição não é completamente
rigorosa, podemos incluir a esse conjunto uma quantidade não enumerável de pares (x, y) que γ
não vê e quebrar a propriedade de ser c-CM. É mais seguro introduzir a noção de suporte de uma
medida.

Definição 2.3.2. Seja X um espaço polonês. O suporte de uma medida µ ∈ P(X ) é o menor
conjunto fechado S ⊂ X tal que µ(S) = 1. Ou ainda, podemos definir

suppµ
def.
= {x ∈ X : µ(Br(x)) > 0 para todo r > 0} .

Se um conjunto A é tal que µ(X \ A) = 0, então suppµ ⊂ A. Além disso, podemos construir
novas medidas de Radon fazendo restrições ao seu suporte. Introduzimos a notação µ A como a
medida definida por

µ A(B) = µ(A ∩B) para todo boreliano B.

Proposição 2.3.1. Sejam X e Y espaços poloneses, c : X × Y → R uma função custo contínua e
µ ∈ P(X ), ν ∈ P(Y). Se γ é um plano de transporte ótimo para o problema de Kantorovich com
custo c e marginais µ e ν, então o suporte de γ é c-ciclicamente monótono.

Demonstração. Seja γ um plano de transporte ótimo e assuma por contradição que supp γ não é
c-CM. Então existe uma sequência finita de pontos {(xi, yi)}ni=1 ⊂ supp γ tais que

n∑
i=1

c(xi, yi)−
n∑
i=1

c(xi, yi+1) > δ. (2.8)

Nosso objetive é de contradizer a otimalidade de γ escolhendo uma pequena região ao redor dos
pontos do suporte {(xi, yi)}ni=1 onde podemos alterar a distribuição de massa de γ e concentrá-la no
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novo ciclo. Como c é um custo contínuo, existem vizinhanças abertas Ui × Vi para cada sequência
(x′i, y

′
i) ∈ Ui × Vi vale que

n∑
i=1

c(x′i, y
′
i)−

n∑
i=1

c(x′i, y
′
i+1) > δ/2.

Logo podemos definir para todo i as medidas

γi
def.
=

γ (Ui × Vi)

mi
, mi

def.
= γ(Ui × Vi) > 0.

Estas estão todas bem definidas e não triviais pois como (xi, yi) ∈ supp γ, temos γ(Ui × Vi) > 0.
Como falamos no capítulo anterior, para qualquer espaço de medida (Ω,F ,P) tal que P não possui
átomos, existem mapas (Xi, Yi) tais que (Xi, Yi)♯P = γi. Em outras palavras, sejam (Xi, Yi)
variáveis aleatórias com distribuição conjunta γi. Definimos então a nova medida

γ̄
def.
= γ + ε

n∑
i=1

[(Xi, Yi+1)♯P− (Xi, Yi)♯P] .

Logo γ̄ ∈ Π(µ, ν) pois além de ter as boas marginais, γ−ε
n∑
i=1

γi ≥ 0 para ε suficientemente pequeno,

por construção. Por outro lado

ˆ
X×Y

cdγ̄ =

ˆ
X×Y

cdγ + ε

ˆ
Ω

(
n∑
i=1

c(Xi, Yi+1)− c(Xi, Yi)

)
dP ≤

ˆ
X×Y

cdγ − ε
δ

2
,

o que contradiz a otimalidade de γ.

Vamos provar que os conjuntos c-ciclicamente monotônicos são exatamente os conjuntos de
pontos de contato entre uma função c-côncava e o custo c. Em analogia ao subdiferencial de
funções convexas, definimos o c-subdiferencial como

∂cφ(x)
def.
=

{
y ∈ Y : x ∈ argmin

x′
c(x′, y)− φ(x′)

}
, (2.9)

assim como o gráfico do operador subdiferencial que se torna

Graph ∂cφ def.
= {(x, y) : y ∈ ∂cφ(x)} = {(x, y) : φ(x) + φc(y) = c(x, y)} . (2.10)

Com essas definições, provamos o seguinte resultado.

Proposição 2.3.2. Sejam X , Y espaços Poloneses c : X × Y → R uma função custo semi-
contínua inferiormente. Então se Γ ⊂ X × Y é um conjunto c-CM, existe uma função c-côncava
φ : X → R ∪ {+∞} tal que

Γ ⊂ Graph ∂cφ.

Demonstração. Note que a condição Γ ⊂ Graph ∂cφ é equivalente à

φ(x) ≤ c(x, ȳ)− c(x̄, ȳ) + φ(x̄), para todo (x̄, ȳ) ∈ Γ, x ∈ X . (2.11)
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De fato, temos que

Γ ⊂ Graph ∂cφ⇐⇒ ȳ ∈ ∂cφ(x̄), para todos (x̄, ȳ) ∈ Γ

⇐⇒ c(x̄, ȳ)− φ(x̄) ≤ c(x, ȳ)− φ(x), para todos (x̄, ȳ) ∈ Γ, x ∈ X .

Fixando um ponto x0 para o qual queremos construir φ tal que φ(x0) satisfazendo (2.11), temos
por um argumento indutivo que

φ(x) ≤ c(x, yN )− c(xN , yN ) +

N−1∑
i=0

c(xi+1, yi)− c(xi, yi),

para toda sequência de pontos (xi, yi)
N
i=0 ⊂ Γ.

Em particular, podemos definir φ como o ínfimo de todas essas quantidades

φ(x)
def.
= inf

(xi,yi)
N
i=0⊂Γ

{
c(x, yN )− c(xN , yN ) +

N−1∑
i=0

c(xi+1, yi)− c(xi, yi)

}
.

Com essa definição, é fácil ver que

φ(x) = inf
(xN ,yN )∈Γ

c(x, yN )− c(xN , yN ) + ϕ(xN ), (2.12)

basta inicialmente considerar o ínfimo na definição de φ com (xN , yN ) fixos e em seguida minimizar
em (xN , yN ). Além disso, pela monotonicidade c-cíclica, temos que φ(x0) ≥ 0; enquanto que para
obter φ(x0) ≤ 0, basta tomar N = 1 e (x0, y0) = (x1, y1).

Para concluir a prova, temos apenas que provar que existe uma função ψ(y) tal que φ = ψc̄.
Para, basta definir

−ψ(y) def.
= inf

(xi,yi)
N
i=0⊂Γ

{
−c(xN , y) +

N−1∑
i=0

c(xi+1, yi)− c(xi, yi)

}
.

De (2.12), temos que φ = ψc̄.

Os resultados de base para provar a dualidade forte e a existência de potenciais de Kantorovitch
são então as proposições 2.3.1 e 3.3.1. Mesmo que estas proposições sejam formuladas para custos
contínuos, podemos obter o caso geral por aproximação.

Teorema 2.3.1 (Dualidade de Kantorovich - Caso Geral). Sejam X , Y espaços poloneses, fixemos
µ ∈ P(X ), ν ∈ P(Y) e uma função custo c : X × Y → [0,+∞] e semi-contínua inferiormente tal
que existam funções a ∈ L1(µ), b ∈ L1(ν) tais que

c(x, y) ≤ a(x) + b(y) o que implica inf
γ∈Π(µ,ν)

ˆ
X×Y

cdγ < +∞. (2.13)

Então as seguintes afirmações são verdadeiras
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1. Há dualidade forte

min
γ∈Π(µ,ν)

ˆ
X×Y

cdγ = sup
φ⊕ψ≤c

φ∈Cb(X ),ψ∈Cb(Y)

ˆ
X
φdµ+

ˆ
Y
ψdν

= max
φ⊕ψ≤c

φ∈L1(µ),ψ∈L1(ν)

ˆ
X
φdµ+

ˆ
Y
ψdν.

(2.14)

Ou seja, há dualidade forte e o supremo é atingido por funções integráveis.

2. Um plano de transporte γ ∈ Π(µ, ν) é ótimo se, e somente se, γ está concentrada em um
conjunto c-ciclicamente monótono.
Em outras palavras, γ é ótimo se, e somente se, existe uma função c-côncava φ tal que

c(x, y) = φ(x) + φc(y) para γ-quase todo (x, y) ∈ X × Y. (2.15)

Nesse caso, o par de potenciais (φ,φc) é ótimo para o problema dual de Kantorovich.

Demonstração. Vamos começar provando o item (1), no caso em que c ∈ Lipb. Tome um plano
de transporte ótimo γ̄ e aplique as proposições 2.3.1 e 2.3.2 em conjunto para obter uma função
c-côncava φ tal que

supp γ ⊂ {(x, y) ∈ X × Y : φ(x) + φc(y) = c(x, y)} .

Pela construção de φ como um c-transformada, φ herda a regularidade de c, ou seja, φ ∈ Lipb(X ).
Logo vale que

min
γ∈Π(µ,ν)

ˆ
X×Y

cdγ =

ˆ
X×Y

cdγ̄ =

ˆ
X×Y

φ(x) + φc(y)dγ̄ =

ˆ
X
φdµ+

ˆ
Y
φcdν

Como a dualidade fraca sempre é válida, temos queˆ
X
φdµ+

ˆ
Y
φcdν = min(P ) ≥ sup(D)

e logo φ e φc são potenciais de Kantorovich ótimos.
Dualidade para c s.c.i.: Pelo Lema 1.5.1 existe uma sequência (ck)k∈N monótona crescente de

funções k-Lipschitz e limitadas que convergem pontualmente para c. Para simplificar a notação,
definimos

Ck(γ)
def.
=


ˆ
X×Y

ckdγ, γ ∈ Π(µ, ν),

+∞, se não,

e analogamente C(·).
Usando a dualidade forte no caso Lipschitz, para cada k ∈ N existe um plano de transporte

ótimo γk e um par de potenciais de Kantorovich (φk, ψk)k∈N tais que φk ⊕ ψk ≤ ck ≤ c. Portanto,
como a dualidade fraca é sempre válida, temos que

min C ≥ sup
φ⊕ψ≤c

ˆ
X
φdµ+

ˆ
Y
ψdν ≥ sup

φ⊕ψ≤ck

ˆ
X
φdµ+

ˆ
Y
ψdν

=

ˆ
X
φkdµ+

ˆ
Y
ψkdν = min Ck
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Dessa forma, para provar a dualidade forte, bastar provar que lim inf
k→∞

min Ck ≥ min C.

Para isso, note que (γk)k∈N ⊂ Π(µ, ν), pois o conjunto de restrições é o mesmo para toda a
sequência de problemas primais. Além disso, ele é sequencialmente compacto pelo teorema de
Prokhorov, logo existe uma subsequência de γk (não renomeada) que converge na topologia estreita
para γ̄. Por outro lado, como ck é uma sequência monótona crescente, fixemos um valor n ∈ N de
forma que para todo k > n temos ck ≥ cn e, portanto,

lim inf
k→∞

min Ck ≥ lim inf
k→∞

ˆ
X×Y

cndγk ≥
ˆ
X×Y

cndγ̄.

Tomando o limite quando n→ ∞ no lado direito da desigualdade à cima, pelo teorema da conver-
gência monótona de Beppo-Levi, obtemos

lim inf
k→∞

min Ck ≥ lim
n→∞

ˆ
X×Y

cndγ̄ =

ˆ
X×Y

cdγ̄ ≥ min C.

Pela discussão anterior a dualidade forte segue no caso c s.c.i. e X ,Y espaços poloneses.
Seguindo para o item (2), começamos provando que todo plano de transporte ótimo γ se con-

centra num conjunto c-CM. Isso é verdade para o caso c ∈ Lipb da Proposição 2.3.1. Para provar
o caso geral c s.c.i., note pelo argumento anterior que

0 ≤
ˆ
X×Y

(c− φk ⊕ ψk)dγ ≤ min C −min Ck −−−−→
k→∞

0.

Logo c − φk ⊕ ψk
L1(γ)−−−−→
k→∞

0, e portanto existe uma subsequência (não renomeada) que converge
γ-quase certamente. Definimos Γ como o conjunto onde essa convergência pontual ocorre, de
formas que γ(Γ) = 1. Para provar que esse conjunto é c-CM, tome uma sequência finita de pontos
(xi, yi)

n
i=1 ⊂ Γ, então

n∑
i=1

c(xi, yi+1) ≥
n∑
i=1

φk(xi) + ψk(yi+1) =

n∑
i=1

φk(xi) + ψk(yi) −−−−→
k→∞

n∑
i=1

c(xi, yi),

e a convergência ocorre diretamente pela definição do conjunto Γ, e daí segue que este é c-CM.
Por outro lado, note pela hipótese (2.13), todo plano de transporte γ ∈ Π(µ, ν) tem custo finito.

Logo no suporte de γ, podemos assumir que o custo c assume valores reais. Dessa forma, se existe
um conjunto c-CM onde se concentra γ, pela Proposição 2.3.2, existe uma função c-côncava φ tal
que (2.15) é verdade.

Sendo assim, temos que

sup (D) ≥
ˆ
X
φdµ+

ˆ
Y
φcdν =

ˆ
X×Y

cdγ ≥ inf (P).

Logo (φ,φc) são potenciais de Kantorovitch ótimos e γ é um plano de transporte ótimo.
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