Capitulo 2

Dualidade de Kantorovitch
Rubinstein

Nesse capitulo vamos discutir um dos resultados mais fundamentais da teoria de transporte 6timo, a
dualidade de Kantorovitch-Rubinstein. Como anteriormente, ao longo desse capitulo vamos assumir
que (X,dx) e (V,dy) sdo espagos Poloneses. Entao dados ¢: X x Y — R s.c.i., tal que o problema
de Kantorovitch tem valor finito para duas distribuigoes de probabilidade p € 2 (X), v € 2(Y), a
dualidade de Kantorovitch afirma que

min / cdy = sup /(pd,u+/ Pdv, (2.1)
YEO(1,v) Jxxy P®P<c X y
PEGH(X), YEEH(Y)

onde a operacio @ : € (X) X (V) — G(X x V) é definida como ¢ @ h(z,y) = (x) + ().

Além de ter um significado matematico profundo através da teoria mais geral de dualidade em
analise e otimizagao convexa, esse resultado também tem uma interpretagao econémica muito rica,
um dos motivos pelos quais Kantorovitch ganhou o prémio Nobel da economia.

Considere a seguinte situagdo: p representa a distribuigdo de padarias numa cidade que pro-
duzem pao, enquanto que v representa a distribuicdo de cafés da mesma que geram a demanda
pelo pao produzido pelas padarias. Dessa forma c(x,y) representa o custo de levar uma unidade
de pao da padaria = ao café y. O problema de Kantorovitch, também chamado o problema primal,
representa portanto o custo total de transporte minimo que um consorcio entre padarias e cafés
pagaria para atender toda a demanda de pao, enquanto exaurindo a producao, assumindo que estas
estao em equilibrio e nao hé excedente de produgao.

No supremo do lado direito, o problema dual, a quantidade ¢(x) representa portanto o quanto
uma transportadora deve cobrar de uma padaria = para retirar uma unidade de pao, enquanto que
¥ (y) representa o preco de entrega de uma unidade de pao no café y. A restrigio p(x) + ¥(y) <
c(x,y) significa que a transportadora ndo pode cobrar mais que o custo de transporte individual
¢(z,y) da padaria z e do café y juntos, pois se esse fosse o caso, o consorcio de cafés e padarias
poderia efetuar o transporte por um custo melhor que a transportadora.

O leitor atento percebeu que o problema dual foi escrito como um sup, enquanto que o pro-
blema primal costumamos escrever como um min. Isso é por que nem sempre podemos demonstrar
a existéncia de potenciais 6timos ¢, 1, pelo menos nao em 6;(X), 6,()). Um objetivo importante
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22 CAPITULO 2. DUALIDADE DE KANTOROVITCH RUBINSTEIN

desse capitulo sera obter condigbes que garantam existéncia de um par (¢,%) que maximize tam-
bém o problema dual, os chamados potenciais de Kantorovitch. Dado um par de potenciais de
Kantorovitch (¢,%), se v é um plano de transporte 6timo, vamos demonstrar que a condi¢ao

o(z) + ¢¥(y) = c(z,y) para y-quase todo par (z,y) (2.2)

é necesséaria e suficiente para a otimalidade de . Essa relagao significa que o problema dual fornece
uma precificacao do servigo de transporte que atinge o equilibrio do mercado.

Agora suponha que o potencial 1 esta fixo, uma forma muito natural de escolher um ¢ de forma
que este par seja admissivel, ou seja, ¢ @ 1 < ¢, é definir o que chamamos de a transformada c

Ve(x) = 11615 c(z,y) — ¥(y), de formas que ¥° ® Y < c. (2.3)
y

Assim como a transformada ¢

O°(y) = inﬁ( c(z,y) — p(x), de formas que p ® ¢° < c. (2.4)
fAS
Toda essa discussao é valida para uma classe de custos ¢ bem ampla, mas o bergo dessa teoria
comegou com o caso X =Y = R? e
C(Jf,y) = -y,
que aparece sem perda de generalidade da escolha c(x,y) = %|x — y|2. Nesse caso o problema de
Kantorovitch e seu dual sao reescritos como

max z-ydy= inf / d +/ dv. 2.5
yEM(p,v) /Xxy v e®Y>zy Jy e Y v (25)
Nessa variante a nogao de transformada-c se torna a transformada de Legendre definida como
[ (p) = sup z-p— f(=), (2.6)
zER?

um objeto central da anéalise e otimizagao convexa.

Por conta disso, nessa capitulo vamos fazer um detour do nosso objetivo inicial de estudar
o problema dual de Kantorovitch para entender algumas ferramentas de anélise convexa, onde a
transformada de Legendre serda o objeto central que também nos servird mais adiante. Um dos
jeitos mais simples e classicos de demonstrar a dualidade é um exercicio de analise convexa, que
se tornard um exercicio para o leitor. Infelizmente essa prova s6 funciona em espacgos métricos
compactos, logo uma vez construidas essas ferramentas, vamos voltar & transformada-c, que pode
ser vista como uma generalizacdo da transformada de Legendre.

2.1 Um pouco de anilise convexa

Nessa sessao vamos estudar as propriedades de fungoes convexas num espaco Banach geral X, ou
seja um espago vetorial normado e completo. Seja um conjunto C' C X, dizemos que C é convexo
sempre que, dados quaisquer dois pontos de C, a reta conectando-os esté contida em C, ou seja
para todo t € (0,1)

tr + (1 —t)y € C para todos z,y € C.
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Os principais exemplos de espagos de Banach que podemos citar sao
Go(X) e Mp(X).

O primeiro, o conjunto das fungoes continuas que convergem para zero no infinito, definidas em um
espago Polonés X' é completo pelo fato de que o limite uniforme de fungoes continuas é também uma
fungao continua. Caso o leitor nao esteja familiarizado com este fato, ele é fortemente encorajado
a prové-lo.

Exercicio 2.1. Seja uma sequéncia (fy),cy C € (&) que converge uniformemente para f, ou seja

[fn = flloo = Slelgdx(fn(x),f(:v)) — 0.

n—oo

Entao f é continua.

Como consequéncia, o espago das medidas de Radon finitas sobre X, .#;,(X), também é um
espaco de Banach, pois é o espaco dual de um espago vetorial normado.! O fato de que .#;(X) =
%o(X)* é um espago de Banach portanto é completamente independente de %(X')* o ser, pois todo
espago dual é completo. Falando de conjuntos convexos, j4 cruzamos um muito relevante para o
nosso estudo:

Exercicio 2.2. Prove que £(X) ¢ um subconjunto convexo de .#,(X). Prove que o conjunto
II(u, v) de planos de transporte com marginais fixas é convexo.

Uma fungao f: X — RU {+oo} ¢ dita convexa se o seu dominio
domf = {z € X : f(z) < +o0}
é um conjunto convexo, e para todo t € (0,1) vale que
flx+ (1 —=t)y) <tf(x)+ (1 —1t)f(y) para todos z,y € X.

Por outro lado, uma fungao f é dita concava se —f é convexa. Nesse caso o dominio de uma funcgao
concava é dado por dom f = {r € X : f(x) > —oo} ainda deve ser convexo e a desigualdade oposta
é satisfeita: para todo t € (0,1) vale que

flx+ (1 —=t)y) >tf(x)+ (1 —t)f(y) para todos z,y € X.

Por outro lado, uma fungéo é dita estritamente convexa (resp. concava) se as desigualdades a cima
sao estritas. No seguinte exercicio o leitor é convidado & verificar diversas propriedades de fungoes
convexas.

Exercicio 2.3. Sejam X um espago de Banach e f: X — RU {400} uma funcéo.

e Prove que se f é estritamente convexa, semi-continua inferiormente e nao é f = +oo, entéo
f admite um tnico minimizante.

e Uma fungao f é convexa se, e somente se, seu epigrafo é convexo.

1Com esses dois exemplos os leitor ja percebe que, para os nossos objetivos, ndo basta desenvolver a teoria em
dimensao finita.
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e Uma fungdo f é convexa se, e somente se, para todos z,y € X a fungdo sobre [0, 1] dada por
t— f(tz + (1 —t)y) é convexa.

e Considere uma familia arbitraria de fungoes convexas (fa),ep, €ntao

(@) = sup fo(@)

acA
é uma fungao convexa.

e Seja C' C X um conjunto fechado e convexo nao vazio. Defina as fungdes indicatrizes (no
sentido da anélise convexa) e suporte de C, x¢ e o¢ respectivamente. Enquanto y¢o : X —
RU {400} ¢ definida sobre X, a fungao suporte é definida sobre o dual o¢ : X* — RU{+0o0}:

xc(r) = _ oc(p) = sup (p,x) = sup (p,x) — xc(z).
+00, se nao, zeC zeX

def. {0, x € C, def.

Prove que o¢ e x¢ sao convexas.

O fato fundamental que permite o desenvolvimento da analise convexa é a versdo geométrica

do teorema de Hahn-Banach, que garante a existéncia de um hiperplano que separe um conjunto
convexo de um ponto exterior a ele.

Teorema 2.1.1 (Hahn-Banach Geométrico). Seja X um espag¢o de Banach, C C X um conjunto
fechado, convexo, nao vazio e xog € X \ C. Entdo, eriste p € X* e a € R tais que

(p,x) < a < (p,xo) para todo z € C.

Demonstracao. A prova segue da versao analitica do Teorema de Hahn-Banach, aplicada ao funci-
onal de Minkowski. Primeiro note que & menos de uma translagao do espago podemos assumir que
0 € int K, o que nao muda a conclusao pois esta serd baseada em um funcional linear. Definimos
entao o funcional de Minkowski

def.

pi(r) = inf{a:a 'z € K,a > 0}.

Temos as seguintes propriedades:

1. px(z) > 0 para todo z € X;

2. pg(Ax) = Apk (x) para todo A >0 e z € X;

3. pr(z+y) < px(z) + pr(y) para todo z,y € X;

4. existe M tal que px(z) < M ||z|| para todo = € X;

5. K={x € X :pg(z) <1}.

O leitor é convidado a provar essas propriedades.

Com o objetivo de aplicar a forma analitica do teorema de Hahn-Banach seja Y = Rz e

g(txg) = t. Segue entdo que g < p em Y. De fato,

e ¢t <0 entdo g(trg) =t <0 < pg(txo)
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t
e ¢ > (entdo —xg € K para todo a > 1 pois zg ¢ K. Na verdade, como dist(zo, K) > 0, temos
!
ainda que pg (tzg) >t = g(txo).

Logo o teorema de Hahn-Banach garante a existéncia de um funcional linear continuo p € X* tal
que ply =g e p < pg em X. Segue entdo que para todo z € K

(p,z) < pr(x) <1 < g(xo) = (p,z0) -
Concluimos que o hiperplano {(p,z) = 1} separa estritamente K e xg. O

De modo geral, esse teorema de separagao funciona também quando estamos lidando com um
espago vetorial topoldgico localmente convero, isto € um espago vetorial munido de uma topologia
tal que toda vizinhancga possui sub-vizinhangas convexas. Esse é justamente o caso do conjunto das
medidas de Radon finitas .#,(X) em um espago polonés X, munido da topologia estreita.? Logo,
de modo geral podemos usar os teoremas de separa¢ao de conjuntos convexos com o produto de
dualidade (A (X),%,(X)) induzido pela topologia estreita.

Desse resultado central serve de fundamento para diversos resultados da analise convexa, in-
clusive outras versoes mais robustas de teoremas de separacao. Nos estamos particularmente in-
teressados na teoria de dualidade para problemas de otimizagao convexa, cujo objeto central é a
transformada de Legendre. No exercicio 2.3, nos deparamos com o primeiro exemplo de transfor-
mada de Legendre com as fungoes indicatriz e suporte de um conjunto convexo. De modo geral,
podemos definir a transformada de Legendre para uma classe bem mais ampla de fungoes

Po(X) = {f X 5 RU (oo} : Jfemmemn oot )
Dada f € T'y(X), a sua transformada de Legendre também é uma fungdo f* € I'o(X*) definida
como

[ (p) = sup (p,x) — f(z).

zeX
Um resultado imediato da defini¢ao é a chamada desigualdade de Fenchel: para todo z € X e
p € X*, vale
f@)+ f(p) = (p.).
De fato, como f*(p) = sup,cx (p,y) — f(y), basta tomar y = z no supremo para obter a desigual-
dade.
Em alguns casos, essa desigualdade se torna uma igualdade, isto &, existe (x,p) tal que

f(@)+ f*(p) = (p,x).

No caso em que X = R% e f € ¢!, a condigdo de otimalidade do supremo definindo f*(p) é dada
por p — Vf(z) = 0. Escolhendo esses pares de valores conjugados (x,V f(z)), temos a identidade

f@) + f7(Vi(@) = (Vf(z),z).

Assim, a desigualdade de Fenchel se torna uma igualdade nos pontos de contato entre f e o plano
tangente definido pelo gradiente. Isso sugere que, no caso nao diferenciavel, o papel do gradiente
deve ser desempenhado por um conjunto de vetores que realizam esse contato. Isso motiva o estudo
das propriedades de diferenciabilidade de fungoes convexas. Em todo ponto de seu dominio podemos
dar uma nogao de derivada direcional.

2Ver “Elements of Mathematics: Topological vector spaces, Chapters 1 to 57, Bourbaki, capitulo 2.
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Lema 2.1.1. Seja f : X — RU{400} uma fun¢io convexa e s.c.i. sobre um espago de Banach X .
Se g € int(dom f) entao a derivada direcional estd bem definida para todo v € X. Isto é, o limite

F(wo;v) = lim J(xo+tv) — fzo) inf f(zo +tv) — f(zo)
AT t T >0 t

existe estd bem definido.

Demonstrag¢do. Como xq € int(dom f) existe p > 0 tal que B,(z9) C dom f (bola aberta de raio
p). Logo, fixando v € X para t suficientemente pequeno xg + tv € dom f e portanto a expressao

f(zo + tv) — f(z0)
t

estd bem definida, vamos provar que ela é monétona. Isso implica que o limite existe e o resultado
segue.

Pela convexidade de f e o exercicio 2.3, t — ¢(t) = f (x + tv) é uma funcdo convexa. Logo

tome 0 < s <t esejaa=s/t <1, deformas que s = at 4+ (1 — @)0. Pela convexidade de ¢ temos
p(s) < ap(t) + (1 — a)p(0)
o(s) —(0) < a(e(t) — ¢(0))
p(s) = ¢(0) _ #(t) = ¢(0)
s - t '
Portanto o limite unilateral existe e é igual ao infimo pela monotonicidade. O

Sabemos bem que a existéncia de derivadas direcionais nao garante a diferenciabilidade da
funcao. Vamos ver no proximo capitulo que isso é verdade em quase todo ponto para fungoes
convexas, mas isso nao é o bastante para estudar problemas de otimizacao convexa pois muitas
vezes é justamente no ponto de nao diferenciabilidade que precisamos obter informacao, por isso
introduzimos a nocao de subdiferencial, que por ser uma noc¢ao mais fraca de diferenciabilidade,
promete resultados mais gerais para a existéncia de sub-gradientes.

Definicao 2.1.1 (Subdiferencial). Seja f € T'o(X). O subdiferencial de f no ponto z € X é o
conjunto

0f(x) = {peX*: fy) 2 f2)+{py—2) YyeX}.
Os elementos de df(z) sdo chamados de subgradientes de f em x.
Note que:

e Se f ¢ diferenciavel em x, entdo d0f(x) = {Vf(x)}.

e Em geral, os elementos de 0 f () sdo exatamente os planos de suporte ao grafico de f no ponto

(@, f(x))-

Proposicao 2.1.1 (Subdiferencial ndo vazio em pontos interiores). Seja f: X — RU {400} uma
fungdo conveza e s.c.i. sobre um espago de Banach X. Se zq € int(dom f) entdo 0f(zo) # @.
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Demonstracao. Aplicando o Lemma 2.1.1 sobre a existéncia de derivadas direcionais em xy €
int dom f, podemos definir o funcional linear e continuo

v X 3 v () = f(zo;v),

que é sublinear pela convexidade de f (i.e. p(Av) = Ap(v) para A > 0 e p(v + w) < p(v) + p(w)).
Pelo teorema de Hahn—Banach para funcionais sublineares, existe p € X* tal que

(p,v) < p(v) para todov € X.

Da defini¢ao de ¢ como infimo para ¢t > 0 segue que, para todo v e todo ¢t > 0,

f(xo +tv) — f(xo)
t )

(p,v) <
isto é f(zo + tv) > f(xo) + t(p,v). Tomando y = z¢ + tv e variando ¢t > 0,v € X obtemos

f) > f(zo) + (p,y —xp) paratodoy € X,
o que mostra p € 0f(xo). Portanto 0f(x¢) # @. O

Observagao 2.1.1. A hipétese z € int(dom f) é essencial: em pontos de fronteira do dominio o
subdiferencial pode ser vazio.

Para as fungoes convexas e s.c.i., a transformada de Legendre é um operador involutivo, em
outras palavras, definindo o biconjugado f** como

(@) = sup (p,x) — f*(p),
peEX*

o teorema de Moreau nos diz que f** = f para tais fungoes.
Teorema 2.1.2 (Teorema de Moreau). Seja f € I'o(X). Entao f** = f.

Demonstracao. A desigualdade f** < f é imediata da definicao de f*. Fixemos z € dom f,
tomando o supremo dentre todos os p € X* na desigualdade de Fenchel, temos que

f(@) = sup (p,z) — f*(p) = [ (2).
peX*
Vamos agora provar a desigualdade inversa, que f < f**. Como f é uma funcao convexa, o seu
epigrafo
epi(f) = {(z,t) edom f x R:t > f(x)}

é também um conjunto convexo. Fixemos entdo um ponto zg tal que f(zg) < +o0.

Dessa forma, para todo £ > 0 o ponto (zo, f(zg) — &) & epi(f). Pela forma geométrica do
Teorema de Hahn-Banach, existe um hiperplano que separa estritamente epi(f) e (zo, f(zo) — €).
Ou seja, existem p € X*, «, 8 tais que

(p, ) +af(x) = B> (p,wo) + a(f(zo) —€),

para todo z € dom(f). Tomando x = zy do lado esquerdo, concluimos que « deve ser estritamente
positivo. Logo, dividindo ambos os lados por a podemos assumir sem perda de generalidade que
a=1.
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Tomando g = —p, temos que para todo x € epi(f)

(q,x} - f(.’E) < _ﬁv

o que implica, tomando o supremo em z € X, que

[ (q) = sup (q,x) — f(z) < =B < {q,20) — f(wo) + €.

Reorganizando os temos e tomando o supremo em ¢, obtemos que

f(x0) —e < sup (g, 20) — [ (q) = £ (20).

qeX*
Como € > 0 era arbitrario, o resultado segue. O

Estes resultados fornecem as ferramentas necessarias para abordarmos a dualidade de Kantoro-
vich, primeiro no caso compacto como aplicagao direta, e depois no caso geral através da teoria de
c-convexidade.

2.2 Dualidade via Convexidade

Podemos agora propor uma prova elementar da dualidade de Kantorovicht utilizando as ferramentas
de analise convexa desenvolvidas. Nosso objetivo é de introduzir as ideias principais nesse caso mais
simples, para depois desenvolvermos a teoria completa usando a nogao de monotonicidade c-ciclica.

Vamos chamar o problema de minimizacao em termos de planos de transporte de problema
primal,

min / c(x,y)dy(z,y), (P)
xXxYy

YE(p,v)
enquanto o problema de maximizacao em termos de funcoes potenciais de problema dual
swp [ pladate) + [ w)dvly) ()
X y

pdYP<c
PEC(X)YeL(Y)

O nosso objetivo entdo é provar que min (P) = max (D), e que ambos os problemas admitem
solugdes. Chamamos de dualidade fraca a desigualdade mais facil de se obter pelo procedimento
chamado de dualizagao das restrigoes que consiste em reescrever a fungao indicatriz xiy(,,,) na sua
forma dual.

Lema 2.2.1. Dados dois espagos Poloneses X e Y e uma fungdo custo ¢ : X x Y — RU {400},
para toda medida v € M+ (X X V) vale que

0, sey e l(p,v),
sup ( [ etnt [wav- [ weewdv) = X (1) = { € )
PEGH(X),YEG(Y) \JX hY xXxYy 400,  se nao.

Como consequéncia disso, vale a dualidade fraca:

min (P) > sup (D).
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Demonstra¢ao. Primeiramente note que se v € II(u, v), entdo para todo par de fungdes ¢ € 65(X)

e € 6 (Y) vale

/godu+/wdu—/ p®YPpdy =0
X hY XXy

pois as marginais de -y sao p e v. Portanto o supremo é igual a zero.
Se v néo tiver p, v como marginais, existe um par de fungdes (¢, 1) tais que

/gpdu-l—/wdu—/ @ @ pdy > 0.
X y XXy

De fato, como as marginais nao coincidem, deve existir um par (¢, ) tal que a diferenca de integrais

a cima é ndo nula. Se essa diferenca for positiva, tome esse par, se for negativa tome (—p, —1)).

Substituindo ¢ e 1 por Ap e Ay para A > 0, e fazendo A — 400 vemos que o supremo ¢é infinito.
Passamos agora & prova da dualidade fraca. Com essa caracterizagao da fungdo indicatriz

XII(u,v), t€mos que

inf (P) = inf d v
o ( ) WEJ/ZLI%XXy)\/XXJ}C AR )(’Y)

= inf sup / (c—<p€B¢)d7+/ godu+/ Ydv
YEM 1 (XXY) e, (X)YEG (V) J X xY X y

O supremo entdo domina essa mesma quantidade avaliada em qualquer par de fungoes (i, ©) fixadas,
e portanto para qualquer tal par temos

inf(P)z/Xgadu+/y1/)du+ inf /X y(c—g&@l/))d’y. (2.7)

YEM L (X XY)

Temos entao que estudar esse infimo em v da mesma forma que fizemos na primeira parte para
Xti(pv)- OS¢ ¢ @Y < ¢, o integrando é nao negativo e portanto o infimo ¢ limitado inferiormente
por 0. Mas essa cota inferior pode ser facilmente atingida por v = 0, de forma que o infimo é 0.
Se néo for o caso, podemos encontrar um ponto (xg, yo) tal que ¢(xg) + ¥ (yo) > ¢(xo,yo), € entdo
tomando v = Ad(z,,y,) € fazendo A — +o00 vemos que o infimo ¢ —oco. Portanto

<
inf / (C(p@d))dfy—{oa Se@@lﬂ_c,
XxYy

YEM4(XXY) —00,  Se nhao.

Voltando para (2.7), como o lado direito ndo depende de 7, temos que o inf do problema primal
majora o supremo do lado direito entre todas as fungoes ¢, 1. Mas veja que pelo argumento que
acabamos de realizar, esse supremo nao muda se considerarmos apenas fungoes ¢ @ ¥ < ¢, pois se
nao o lado direito é —oo e a desigualdade é trivialmente satisfeita. Portanto

inf (P) > sup / wdp + / wdv = sup (D),
pBrp<c X y
PEGH(X)WYEEH(Y)

e a dualidade fraca segue. O
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Vamos agora propor uma prova elementar da dualidade forte?, baseada no teorema de Moreau
da anélise convexa. Para isso, tome X x ) localmente compactos, considere o funcional H :
Go(X xY) = RU {+0o0} definido como

H(p)dg'_ sup {/ @du+/wdvzap€9w<c—p}.
PYEGH(X),YeEBH(Y) X hY

Dessa forma temos que H(0) = —sup (D), e a provando que H é convexa e s.c.i., podemos aplicar
o teorema de Moreau, na esperanca que a relacdo H(0) = H**(0) corresponda a dualidade forte.

Teorema 2.2.1. Sejam X e Y espagos poloneses localmente compactos e seja ¢ : X xY — RU{+o0}
uma fungao custo semi-continua inferiormente tal que inf (P) < +o0. Entdo as sequintes afirmagoes
sao verdadeiras:

1. H € conveza e s.c.i. sobre €,(X x V), com respeito & convergéncia uniforme;

2. A transformada de Legendre de H é dada por

. clz,y)dy(z,y), sevyell(p,v),
H*(y)= sup (p,y)—H(p) = /Xxy
PECO(XxY) +o0, se nao;

3. Temos dualidade forte.

Demonstragao. (1) Para provar a convexidade de H, sejam pg,p1 € €,(X x V) e t € [0,1]. Tome
pares (i, ;) admissiveis para H(p;), com 7 = 0,1 e defina

(01, 1) = (1= ) (w0, v0) + t(p1,¥1),  pe = (1 —t)po + tp1.

Logo temos que ¢, @ ¥, < ¢ — p; e, portanto,

—H(p,) > (1—1t) waodﬂ+/ywody} +t[/){<p1du+/y¢1dy].

Tomando o supremo sobre todos os pares admissiveis (;, ;) para ¢ = 0,1, primeiro para i = 0
depois para ¢ = 1, segue a convexidade de H.
Il ll oo

Para provar que H é s.c.i., seja p, —— p. Fixemos ¢ > 0 arbitrario, e tome usando a defini¢ao
n—oo

de supremo, um par @, ® ¥, < c— p, tal que

/ Sond/-t'*'/ '(/JndV > _H(pn) — €.
X y

Defina o novo par admissivel (@y,%,) com @, = ¢, — 0, com §, = ||p, — ||, de formas que
@n@wn S Cip' LOgO

/ @nd/Hr/ Yndv > —H(pp) — € — On.
x y

3Veja por exemplo “Optimal Transport for applied mathematicians”, sessdo 1.6.3; note que na prova dessa refe-
réncia, usamos a existéncia de potenciais de Kantorovitch em dominios compactos. O que nao é feito aqui, mas a
ideia continua muito parecida.
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Dessa forma, (@n,t%y) se torna admissivel para H(p) e nos temos que

—H(p) > / @nd/i +/ 'l/}ndV > _H(pn) — &= 5n
X y
Tomando o lim inf quando n — oo obtemos
H(p) <liminf H(p,) + €.
n—roo

Como € > 0 era arbitrario, a semicontinuidade inferior de H segue.
(2) Vamos agora calcular a transformada de Legendre de H. Seja v € A4 (X x )), entao

H*(vy) = Sup (p,7) — H(p)

=sup(p,7) + sup / edp + / Ydv
p p®Y<c—pJXx y

=sup(c,y) + sup /sﬁdwr/lbdvf/ (c—p)dy
p p®Y<c—pJ X y XxY

/ c(z,y)dy(z,y), sevyell(p,v),
X XY
400, se nao,

onde a tdltima igualdade segue do Lema 2.2.1 aplicado & medida .
(3) Finalmente, aplicando o teorema de Moreau, temos que

sup/ <pdu+/ pdv = —H(0) = —H**(0) = inf )/ cdry,
X Yy

pdY

e a dualidade forte segue. O

Esse argumento, apesar de simples e geral, nao nos fornece existéncia de potenciais de Kan-
torovich e que por sua vez, nao podem ser empregados para extrair mais informagao do plano de
transporte 6timo. Por outro lado, dado um par (i, 1)) admissivel, podemos reescrever as restrigoes
como: dado y € Y devemos ter que

(y) < c(z,y) — p(x) para todo x € X,

o que nos indica que o maior valor possivel para 1 (y) deve ser dado pelo infimo das quantidades
a direita, e ndo menos do que isso. Isso motiva a definicao de c-transformada, que é o analogo da
transformada de Legendre na teoria de transporte 6timo.

Definicao 2.2.1 (c-Transformada). Sejam X, ) espagos poloneses e ¢ : X x Y — R uma fungéo
semi-continua inferiormente. Dada ¢ : X — RU {400}, a transformada-c de ¢ ¢é a funcdo ¢°: )Y —
R U {#o0} dada por

¥°(y) = inf {c(z,y) — p(z)} paratodoy €Y.

Por outro lado, a transformada ¢ de uma fungao ¥ : Y — R U {400}, é a fungao ¢ : X —
R U {£o0} dada por

°(z) = inf {c(z,y) —¥(y)} paratodo x € X.
yey

Uma funcao v é dita c-concava se existe ¢ tal que 1 = p°.
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A motivacao para a definicao de fungbes c-concavas vem do teorema de Moreau da analise
convexa. De fato, uma consequéncia imediata desse teorema é que uma fungao ¢ é convexa se, e
somente se, ela é a transformada de Legendre de uma outra funcao.

As seguintes propriedades da transformada ¢ seguem diretamente da definigao.

Proposigao 2.2.1. Sejam X e Y espagos poloneses. A sequintes propriedades sao satisfeitas
1. Seja um par (p, ) tal que p B Y < ¢, entio P < p°;
2. Se c€ 6(X xY) possui um mddulo de continuidade, i.e.
le(z,y) — c(@’,y)] < wa(dx(z,2")) +wy(dy(y, y)),
entdo quaisquer fungoes c-concavas P°,° tem mddulos de continuidade wy € wy.

Demonstragao. Propriedade (1) segue diretamente da defini¢ao. Para provar (2), considere y,y’ €
Y, dado € > 0, pela definicao da transformada c, deve existir z’ tal que

c(asy) —p(a) < () + ¢
Logo usando z’ no infimo que define ¢°(y) temos que
P°(y) = ¢°(V) < c(a'sy) — p(a’) = (e(a’,y) — p(a') + &) = c(a’,y) — c(a',y) + €
< wy(dy(y,y")) +e.
Fazendo ¢ — 0 e trocando os papeis de y,y’, obtemos que
[0°(y) = (V)] < wy(dy(y, ¥).

O mesmo argumento mostra que o médulo de continuidade de ¥¢ é dado por wx. O

Usando esses dois resultados, junto de teoremas cléssicos de compacidade de fungbes continuas,
ou seja, o teorema de Ascoli-Arzela.

Teorema 2.2.2 (Ascoli-Arzeld). Seja X' um espago polonés compacto. Um conjunto F C €(X)
fechado na topologia induzida pela convergéncia uniforme € sequencialmente compacto se, e somente
se

o F ¢€ equilimitada, i.e. existe C > 0 tal que ||f|| . < C para toda f € F;

o F € equicontinua, i.e. para todo € > 0 existe § tal que

se dy(z,y) <9, entao |f(x)— f(y)] <e.
Ou equivalentemente, existe um modulo de continuidade w comum a todas as funcoes f € F.
Com isso, podemos provar que existe um par de potenciais de Kantorovich (¢, ).

Exercicio 2.4. Dados X e ) espagos Poloneses compactos e ¢ uma funcao custo continua. Prove
que existe um par de potenciais de Kantorovich (i, ) tais que 1) = ¢° e ¢ é uma fungdo c-concava.
[Dica: Para aplicar o método direto, construa uma sequéncia mazimizante equicontinua usando a
transformada c.|
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2.3 O caso geral: conjuntos c-ciclicamente mono6tonos

Na nossa intuicao economica anterior imagine o seguinte: dados um conjunto de fornecedores X e
um conjunto de consumidores ), suponha que temos um plano de transporte v que associa cada
fornecedor a um consumidor, e que esse plano é 6timo. Agora, considere uma troca ciclica entre
varios pares (z;,y;) no suporte de ~, onde cada fornecedor x; passa a fornecer para o consumidor
Yi+1 (com y, 11 =y1). A variagdo do custo total de transporte nessas situagoes é dada por

: c(Ti, yivy1) — Zc(ﬂ«"uyi)

n n
i=1 =1

Se essa variagao for estritamente positiva, entao o plano original nao seria 6timo. Portanto, para
qualquer ciclo de trocas, o custo total ndo pode diminuir. Isso motiva a seguinte definigao:

Definigao 2.3.1 (c-Monotonicidade Ciclica). Um conjunto I' C X X Y é c-ciclicamente mondtono
se para todo n € N e toda sequéncia finita {(z;,y;)}7~; C T, vale

c(zi, yi) < Z (@i, Yiv1),

n n
=1 i=1

?

onde convencionamos y,+1 = yi.

Para formalizar a intuigdo anterior nos diz que se -y é 6timo, entdo y-quase todo par (z,y)
deve estar contido em um conjunto ¢c-CM. No entanto, veja que essa intuigao nao é completamente
rigorosa, podemos incluir a esse conjunto uma quantidade nao enumeravel de pares (x,y) que v
nao vé e quebrar a propriedade de ser c-CM. E mais seguro introduzir a nocao de suporte de uma
medida.

Definicao 2.3.2. Seja X um espago polonés. O suporte de uma medida p € (X) é o menor
conjunto fechado S C X tal que u(S) = 1. Ou ainda, podemos definir

supp = {z € X : u(B,(z)) > 0 para todo r > 0} .

Se um conjunto A é tal que (X \ A) = 0, entdo supppu C A. Além disso, podemos construir
novas medidas de Radon fazendo restrigdes ao seu suporte. Introduzimos a notagao puL A como a
medida definida por

wl A(B) = u(AN B) para todo boreliano B.

Proposigao 2.3.1. Sejam X e Y espacos poloneses, ¢ : X x Y — R uma func¢do custo continua e
we 2X),ve P(Y). Sev éum plano de transporte étimo para o problema de Kantorovich com
custo ¢ e marginais | e v, entao o suporte de vy € c-ciclicamente mondtono.

Demonstra¢ao. Seja v um plano de transporte 6timo e assuma por contradicao que supp~y nao é
¢-CM. Entao existe uma sequéncia finita de pontos {(z;, yi)}?zl C suppy tais que

n n

Z c(i, yi) — Z c(xi, Yir1) > 6. (2.8)

i=1 =1

Nosso objetive é de contradizer a otimalidade de 7y escolhendo uma pequena regiao ao redor dos
pontos do suporte {(z;,y;)};—, onde podemos alterar a distribui¢ao de massa de 7 e concentré-la no
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novo ciclo. Como ¢ é um custo continuo, existem vizinhangas abertas U; x V; para cada sequéncia
(f,yl) € U; x V; vale que

n n

> clat,y) = D elahyipy) > 6/2.

i=1 i=1

Logo podemos definir para todo ¢ as medidas

& YL (Ui x V; of.
'yid:f'w, m; = ~(U; x V;) > 0.

m;

Estas estao todas bem definidas e néo triviais pois como (x;,y;) € supp-y, temos v(U; x V;) > 0.
Como falamos no capitulo anterior, para qualquer espago de medida (€2, F,P) tal que P ndo possui
atomos, existem mapas (X;,Y;) tais que (X;,Y;);P = ~;. Em outras palavras, sejam (X;,Y;)
varidveis aleatorias com distribuicao conjunta ;. Definimos entao a nova medida

TE y+e ) [(Xi, Yipr)sP — (X5, Yi)sP) .
i=1

n
Logo 7 € I(u, v) pois além de ter as boas marginais, y—e Z v; > 0 para ¢ suficientemente pequeno,
i=1
por construgao. Por outro lado

- )
/ cdy = / cdy + 8/ (X, Yip1) — (X, Y;) | dP < / cdy —e—,
XxXY XxXY Q i=1 X XY 2

o que contradiz a otimalidade de . O

Vamos provar que os conjuntos c-ciclicamente monotoénicos sao exatamente os conjuntos de
pontos de contato entre uma fungao c-concava e o custo ¢. Em analogia ao subdiferencial de
fungoes convexas, definimos o c-subdiferencial como

Op(x) = {y €Y :x € argminc(a’,y) — <p(x’)} : (2.9)

x

assim como o grafico do operador subdiferencial que se torna

Graph 9% = {(z,y) 1 y € 8°p(2)} = {(x,y) : p(z) + ¥°(y) = c(z,y)} - (2.10)
Com essas definigoes, provamos o seguinte resultado.

Proposigao 2.3.2. Sejam X, ) espacos Poloneses ¢ : X x Y — R uma funcao custo semi-
continua inferiormente. Entao se ' C X x Y € um conjunto c-CM, existe uma fun¢ao c-concava
¢: X > RU{+o0} tal que

I' C Graph 0%p.

Demonstrag¢ao. Note que a condigdo I' C Graph 9°p é equivalente a

o) < clz,y) — c(Z,9) + ¢(Z), paratodo (Z,7) €T, x € X. (2.11)
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De fato, temos que

I' C Graph 0% <= § € 0°p(Z), para todos (Z,y) € T’
— c(7,7) — ¢(T) < c(x,7) — p(z), para todos (Z,y) €T, z € X.

Fixando um ponto z para o qual queremos construir ¢ tal que p(z() satisfazendo (2.11), temos
por um argumento indutivo que

2
L

o(r) < e(z,yn) — c(rN,yn) + c(@iv1,yi) — (@i, yi),

s
Il
o

para toda sequéncia de pontos (z;, yi)i\io crT.
Em particular, podemos definir ¢ como o infimo de todas essas quantidades

N-1
p(z) = inf c(z,yn) — clzn,yn) + Z c(@iv1,y:) — c(@i, yi) ¢ -
(wi,y:) 1 CT i—o

Com essa definigao, é facil ver que

QD(J“) = inf C(x7yN) —C(ﬂfNaZ/N) +¢(xN)7 (212)
(zn,yn)ED

basta inicialmente considerar o infimo na defini¢ao de ¢ com (zx, yn) fixos e em seguida minimizar
em (zy,yn). Além disso, pela monotonicidade c-ciclica, temos que () > 0; enquanto que para
obter ¢(zg) < 0, basta tomar N =1 e (x0,%0) = (1,91)-

Para concluir a prova, temos apenas que provar que existe uma fungao ¥ (y) tal que ¢ = ¥°.
Para, basta definir

N-1
—¢(y) = inf —c(en,y) + Y cl@ip1,ys) — c(@i yi) ¢ -
(@i,9:) 7o CT i—0

De (2.12), temos que ¢ = °. O

Os resultados de base para provar a dualidade forte e a existéncia de potenciais de Kantorovitch
sao entao as proposicoes 2.3.1 e 3.3.1. Mesmo que estas proposi¢oes sejam formuladas para custos
continuos, podemos obter o caso geral por aproximagao.

Teorema 2.3.1 (Dualidade de Kantorovich - Caso Geral). Sejam X, Y espacos poloneses, firemos

we PX), ve PY) e uma fungio custo c: X x Y — [0,+00] e semi-continua inferiormente tal
que existam fungdes a € L*(p), b € L' (v) tais que

c(z,y) < alz)+b(y) o que implica  inf / edy < +o0. (2.13)
YE(p,v) Jx xy

Entao as seguintes afirmacoes sao verdadeiras
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1. Hd dualidade forte

min / cdy = sup /(pd,u+/ pdy
YEO(1,v) J xxy PdY<c X y
@G%}](X),’L/)G%b(y)

= max /X odp + /y bv. .

pdY<c
peL (u), el (v)

Ou seja, hd dualidade forte e o supremo € atingido por fungées integrdveis.

2. Um plano de transporte v € Il(u,v) € dtimo se, e somente se, vy estd concentrada em um
conjunto c-ciclicamente mondtono.

Em outras palavras, v € dtimo se, e somente se, existe uma func¢do c-concava @ tal que
c(x,y) = o(x) + ¢°(y) para y-quase todo (z,y) € X x V. (2.15)
Nesse caso, o par de potenciais (, p©) € dtimo para o problema dual de Kantorovich.

Demonstrag¢ao. Vamos comegar provando o item (1), no caso em que ¢ € Lipy,. Tome um plano
de transporte 6timo 7 e aplique as proposicoes 2.3.1 e 2.3.2 em conjunto para obter uma funcgao
c-concava ¢ tal que

suppy C {(z,y) € X x YV : o(x) + ¢°(y) = c(=,y)} .

Pela construgao de ¢ como um c-transformada, ¢ herda a regularidade de ¢, ou seja, ¢ € Lip,(X).
Logo vale que

min / cd’y:/ cd*y:/ <p(x)+g0c(y)d*y:/ cpdu+/ eedr
YEM(kv) J xxy XxY XXy X y

Como a dualidade fraca sempre é valida, temos que
/ wdp +/ ©°dv = min(P) > sup(D)
X y
e logo ¢ e ¢ sao potenciais de Kantorovich 6timos.

Dualidade para ¢ s.c.i.: Pelo Lema 1.5.1 existe uma sequéncia (cx),y monotona crescente de
fungoes k-Lipschitz e limitadas que convergem pontualmente para c. Para simplificar a notagao,

definimos
o. cpdy, v €1l(p,v),
Ce(y) = /X XY

+00, se nao,

e analogamente C(-).

Usando a dualidade forte no caso Lipschitz, para cada k € N existe um plano de transporte
6timo 7 e um par de potenciais de Kantorovich (¢, ¥r),cy tais que ¢ @ 9y, < ¢ < c. Portanto,
como a dualidade fraca é sempre valida, temos que

minC > sup /cpd,u—l—/z/)duz sup /g@du—i—/zﬁdu
p®Y<cJ X y pdY<cr JX v

:/ npkdu—l—/z/}kduzminck
X Yy
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Dessa forma, para provar a dualidade forte, bastar provar que likm inf minCy, > minC.
—00

Para isso, note que (Vx),cny C II(y,v), pois o conjunto de restri¢des ¢ o mesmo para toda a
sequéncia de problemas primais. Além disso, ele é sequencialmente compacto pelo teorema de
Prokhorov, logo existe uma subsequéncia de 7, (ndo renomeada) que converge na topologia estreita
para 7. Por outro lado, como ¢ € uma sequéncia monotona crescente, fixemos um valor n € N de
forma que para todo k > n temos ¢ > ¢, e, portanto,

lim inf min C;, > lim inf Ccndyg > / cndy.
XY %Y

k—o0 k—o0

Tomando o limite quando n — oo no lado direito da desigualdade a cima, pelo teorema da conver-
géncia monotona de Beppo-Levi, obtemos

liminf minC, > lim cpdy = / cdy > minC.
k—oo n—=% Jxxy XY
Pela discussao anterior a dualidade forte segue no caso ¢ s.c.i. e X', ) espacos poloneses.
Seguindo para o item (2), comegamos provando que todo plano de transporte 6timo v se con-
centra num conjunto c-CM. Isso é verdade para o caso ¢ € Lip, da Proposigao 2.3.1. Para provar
o caso geral ¢ s.c.i., note pelo argumento anterior que

OS/ (¢ — ok ® Yg)dy <minC — minC, —— 0.
XxY k—o0

L (v . N -
Logo ¢ — ¢ ® Yy k—()> 0, e portanto existe uma subsequéncia (ndo renomeada) que converge
— 00

v-quase certamente. Definimos I' como o conjunto onde essa convergéncia pontual ocorre, de
formas que y(I") = 1. Para provar que esse conjunto é c-CM, tome uma sequéncia finita de pontos

n
i

(zi,9;)", C T, entdo

n n

c(wi yir1) = Y er(@) + Ur(yirn) = D onlas) + ¥r(y:) - > elws g,

1 i=1 i=1 i=1

n

7

e a convergéncia ocorre diretamente pela definicao do conjunto I', e dai segue que este é c-CM.
Por outro lado, note pela hipotese (2.13), todo plano de transporte v € II(u, ) tem custo finito.
Logo no suporte de «, podemos assumir que o custo ¢ assume valores reais. Dessa forma, se existe
um conjunto ¢-CM onde se concentra v, pela Proposi¢ao 2.3.2, existe uma fung¢ao c-concava ¢ tal
que (2.15) é verdade.
Sendo assim, temos que

sup (D) E/X@du—l—/ywcduz/x ycd'yzinf (P).
X

Logo (¢, ¢°) sao potenciais de Kantorovitch 6timos e v é um plano de transporte 6timo. O
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