
Capítulo 1

O problema de Monge-Kantorovitch

1.1 Introdução
Em 1781, o matemático francês Gaspar Monge propos uma formulação matemática para a seguinte
pergunta:

Dada uma distribuição de recursos e uma distribuição de demandas, como trans-
portar tais recursos à demanda de forma a realizar o mínimo trabalho possível?

A sua intuição original era que tais recursos seriam de fato materiais de construção distribuídos
num terreno, enquanto que a demanda seria uma distribuição desejada dos recursos à disposição
no mesmo terreno, por exemplo para a construção de uma casa.

De forma geral, podemos tomar um espaço ambiente bem mais abstrato onde se distribuem tais
recursos e demandas. Sendo assim, vamos considerar que os espaços ambiente onde se distribuem
tais recursos e demandas são dados por um espaços métricos (X , dX ) e (Y, dY). Faremos a hipótese
mais à frente que estes são espaços poloneses, ou seja metrizáveis, completos e separáveis (que admi-
tem um subconjunto denso e enumerável). Sendo assim, a intuição de Monge é recuperada tomando
X e Y como o espaço euclidiano Rd, com a topologia usual. No que diz respeito às distribuiçōes
de recursos e demandas, na linguagem moderna da teoria da medida, estas são representadas por
medidas de probabilidade µ ∈ P(X ) e ν ∈ P(Y).

Segundo a intuição original de Monge, o trabalho de levar uma unidade de massa de um ponto x
para um ponto y seria dado pela distância euclidiana |x−y|, mas ainda na filosofia de considerar um
problema de transporte de massa abstrato, podemos imaginar que o custo unitário de transportar
uma unidade de massa de x ∈ X para y ∈ Y seria dado por uma função

c : (x, y) ∈ X × Y 7→ c(x, y) ∈ R.

Por outro lado, o transporte em si é realizado por um mapa mensurável cujo domínio é o espaço de
recursos e imagem dada pelo espaço de demandas T : X → Y, satisfazendo a restrição de realizar
o transporte de µ à ν. Na linguagem moderna da teoria da medida isso quer dizer que a medida
de transporte de T sobre µ, T♯µ, também conhecida na literatura em inglês como medida de push-
forward, deve coincidir com ν. Em outras palavras, para todo conjunto Borel mensurável A ⊂ Y
deve-se ter que

T♯µ(A)
def.
= µ(T−1(A)) = ν(A).
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Juntando todos esses elementos, o problema proposto é portanto escrito numa linguagem mo-
derna como

inf
T♯µ=ν

ˆ
X
c (x, T (x)) dµ(x). (M)

No caso X = Y = Rd e c(x, y) = |x − y|, Monge provou que se um mapa T é ótimo, então não
há cruzamentos entre os trajetos de transporte, o que em si já é uma propriedade interessante,
mas ele não provou a existência de um mapa ótimo, do mesmo jeito que a comunidade de cálculo
das variações da época não havia começado a se perguntar quando, e em quais classes de funçōes,
problemas variacionais admitem um minimizante.

Por outro lado, mesmo a existência de um mapa T que realize o transporte entre duas medidas
quaisquer µ e ν é um problema não trivial. De fato, imagine que µ admita um átomo num ponto x,
ou seja µ({x}) > 0, para todo mapa mensurável T a medida de transporte T♯µ conterá um átomo
no ponto T (x). Logo se ν não contiver átomos, não existe nenhum mapa que faça o transporte
de µ à ν! Veremos que esse problema é facilmente contornável se escolhermos uma boa classe de
medidas µ. Na verdade é suficiente que µ não contenha átomos para que exista um mapa fazendo
o transporte de µ para qualquer medida ν, mas infelizmente esse não é a única dificuldade da
formulação de Monge. A restrição de fixar T♯µ = ν é extremamente não linear o que a torna muito
mais difícil de passar ao limite, sendo então o maior impedimento em aplicar o método direto do
cálculo das variações que veremos mais à frente nesse capítulo.

1.2 Uma alternativa probabilística: a formulação de Kanto-
rovitch

Como vimos anteriormente, um dos problemas centrais na formulação de Monge é a existência de
um mapa que realize o transporte de uma medida para outra. Também discutimos que basta que
a medida inicial não contenha átomos para que um tal mapa exista, então uma alternativa é fixar
um espaço de probabilidade do começo (Ω,F ,P) tal que a medida de probabilidade P não contenha
átomos, de forma que para qualquer par (µ, ν) ∈ P(X ) × P(Y) existam mapas X : Ω → X e
Y : Ω → Y tais que

X♯P = µ, Y♯P = ν.

Em outras palavras, para cada par de leis de probabilidade µ, ν, existe um par de variáveis
aleatórias X,Y com estas respectivas leis, também escrevemos X ∼ µ e Y ∼ ν. Na notação de
probabilidade escrevemos: para todo conjunto boreliano A ⊆ X

P({X ∈ A}) = µ(A) = P(X−1(A)).

Dessa forma, podemos escrever uma formulação probabilística do problema de Monge (M), também
conhecida como o problema de Kantorovitch

min
X∼µ, Y∼ν

E[c(X,Y )].

Essa formulação é equivalente à considerarmos um problema de minimização sobre todas as
medidas de probabilidade no espaço produto X ×Y cujas marginais são µ e ν, os chamados planos
de transporte. Em outras palavras consideramos o espaço

Π(µ, ν)
def.
=
{
γ ∈ P(X × Y) : (π0)♯γ = µ, (π1)♯γ = ν

}
,
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onde π0 = πX : (x, y) 7→ x e π1 = πY : (x, y) 7→ y. A condição (π0)♯γ = µ portanto é equivalente à

µ(B) = γ(B × Y) para todo boreliano B ⊂ X ,

e dizemos que µ é uma marginal de γ. De forma análoga, a condição (π1)♯γ = ν diz que ν é a outra
marginal de γ. Dessa forma, o problema de Kantorovitch pode ser escrito em termos de planos de
transporte como

min
γ∈Π(µ,ν)

ˆ
X×Y

c(x, y)dγ(x, y) ≡ min
X∼µ, Y∼ν

E[c(X,Y )]. (K)

Dessa formulação, fazemos as seguintes observações:

• A formulação (K) não tem mais o problema de inexistência de um competidor admissivel, pois
a medida produto µ ⊗ ν pertence sempre à Π(µ, ν), logo o conjunto de planos de transporte
admissíveis é sempre não vazio.

• Qualquer mapa de transporte T que realize o transporte de µ à ν induz um plano de transporte
γT

def.
= (id, T )♯µ ∈ Π(µ, ν). Dessa forma

min (K) ≤ inf (M).

Portanto, se um plano de transporte ótimo é da forma γT para algum mapa T , então T é um
mapa ótimo para o problema de Monge. De fato, esse é o caso, temos que

inf (M) ≤
ˆ
X
c(x, T (x))dµ(x) = min (K) ≤ inf (M).

Veremos mais à frente que sob certas hipóteses sobre a medida µ e a função custo c, um plano
de transporte ótimo é sempre da forma γT .

• Note que por linearidade da integral, o funcional γ 7→
ˆ
X×Y

cdγ é linear; enquanto que o

conjunto de planos de tranporte Π(µ, ν) é convexo. A formulação (K) se torna então um
problema de minimização linear sobre um conjunto convexo, o que facilita muito a análise de
existência.

Portanto, a estratégia natural para obter existência de um mapa de transporte ótimo para
o problema de Monge é inicialmente se apoiar sobre os resultados mais facilmente obtidos
para o problema de Kantorovitch e em seguida utilizar as condições de otimalidade para esse
problema para mostrar que o plano de transporte ótimo é da forma γT para algum mapa T .

Por isso nosso foco será de nos concentrar inicialmente nos resultados fundamentais da topologia
de espaços poloneses e das medidas de probabilidade sobre tais espaços, em particular no Teorema
de Weierstrass que garante existência de minimizantes de funções semi contínuas inferiormente em
conjuntos compactos, e cuja prova é essencialmente o argumento conhecido como o método direto
do calculo das variações. Isso culminará em um teorema de existência com hipóteses mínimas para
o problema de Kantorovitch. Em seguida, vamos explorar a estrutura do problema de Kantorovitch
como a minimização de um funcional linear num conjunto convexo, para isso vamos desenvolver
ferramentas de análise convexa que nos dará muita informação quanto à estrutura de planos de
transporte ótimo. Tudo isso, nos permitirá atacar o problema de Monge.



6 CAPÍTULO 1. O PROBLEMA DE MONGE-KANTOROVITCH

1.3 O método direto do cálculo das variações em espaços mé-
tricos

O objetivo dessa sessão não é de construir toda a teoria de espaços métricos, uma vez que já existem
excelentes referências para o assunto, em particular em literatura matemática em português.

O método direto do cálculo das variações:

Geralmente, em cursos de análise na reta, é apresentado o Teorema de Weierstrass que afirma:

Seja f : [a, b] → R uma função contínua, então existem pontos x⋆, x⋆ ∈ [a, b]
atingindo o ínfimo e o supremo de f no intervalo [a, b], ou seja,

f(x⋆) = min
x∈[a,b]

f(x), f(x⋆) = max
x∈[a,b]

f(x).

Demonstração. De fato, como f é contínua num intervalo compacto, então f é limitada, logo o
conjunto f([a, b]) ⊂ R é limitado. Portanto, o supremo e o ínfimo de f([a, b]) existem. Seja
m = inf f([a, b]), então existe uma sequência (xn)n∈N ⊂ [a, b] tal que f(xn) → m. Como [a, b] é
compacto, então existe uma subsequência (xnk

)k∈N convergente para algum ponto x⋆ ∈ [a, b]. Pela
continuidade de f , temos que

f(x⋆) = f

(
lim

k→+∞
xnk

)
= lim
k→+∞

f(xnk
) = m.

De forma análoga, existe um ponto x⋆ tal que f(x⋆) = max f([a, b]).

A prova é simples e elegante, no entanto, as propriedades fundamentais que garantem a mesma
conclusão são a noção de semi-continuidade e compacidade, que se estendem sem grandes dificul-
dades para espaços métricos gerais.

Um espaço métrico é um conjunto X munido de uma função d : X ×X → [0,+∞), chamada de
métrica ou distância, que satisfaz as seguintes propriedades:

• d(x, y) = 0 se e somente se x = y;

• d(x, y) = d(y, x) para todo x, y ∈ X ;

• d(x, z) ≤ d(x, y) + d(y, z) para todo x, y, z ∈ X (desigualdade triangular).

Estamos particularmente interessados em espaços poloneses, isto é métricos completos e sepa-
ráveis. Um espaço métrico é dito completo se toda sequência de Cauchy converge para um ponto
do espaço.1 Por outro lado, um espaço métrico é dito separável se existe um subconjunto denso
enumerável.2

A semi-continuidade e compacidade são propriedades topológicas que estão normalmente em
competição entre si; propriedades de continuidade são favorecidas por noções de convergência (to-
pologias) mais fracas, mais fáceis de serem verificadas, enquanto que a compacidade em geral ne-
cessita mais estrutura para essa noção de convergência. Em seguida vamos relembrar os conceitos
principais da topologia de espaços métricos.

1Lembramos que uma sequência (xn)n∈N ⊂ X é dita de Cauchy se para todo ε > 0 existe N ∈ N tal que para
todo m,n ≥ N temos d(xn, xm) < ε.

2Ou seja, existe um conjunto D = (xn)n∈N ⊆ X tal que para todo x ∈ X e todo ε > 0 existe n ∈ N tal que
d(x, xn) < ε.
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Definição 1.3.1. Um função f : X → R ∪ {+∞} é semi-contínua inferiormente (s.c.i.) se seus
sub-níveis são fechados, ou seja para todo ℓ ∈ R o conjunto

{f ≤ ℓ} = {x ∈ X : f(x) ≤ ℓ}

é fechado.
Uma função f : X → R ∪ {+∞} é sequencialmente semi-contínua inferiormente se para toda

sequência (xn)n∈N ⊂ X convergente para x⋆ ∈ X temos

f(x⋆) ≤ lim inf
n→+∞

f(xn)
def.
= inf

{
L : f(xnk

) −−−−→
k→∞

L,

}
= lim
n→+∞

(
inf
m≥n

f(xm)

)
.

A equivalência das noções de semi-continuidade é uma propridade geral da topologia de espaços
métricos e vem da caracterização de conjunto fechado via sequências3 O leitor é convidado à verificar
essa equivalência e demais propriedades de funçōes semi-contínuas inferiormente.

Exercício 1.1. Seja f : X → R ∪ {+∞} uma função s.c.i., o domínio de f é definido como
dom f

def.
= {x ∈ X : f(x) < +∞}.

(a) Prove que, se x ∈ dom f então para todo ε > 0, existe uma vizinhança aberta V de x tal que

f(y) > f(x)− ε, para todo y ∈ V.

(b) Se f(x) = +∞, então para todo M > 0, existe uma vizinhança aberta V de x tal que

f(y) > M, para todo y ∈ V.

(c) As propriedades dos itens anteriores não necessitam da topologia de espaços métricos. Mostre
que semi-continuidade inferior e semi-continuidade inferior por sequências são equivalentes
em um espaço métrico X .

(d) O epígrafo de uma função f é definido como

epi(f) def.
= {(x, t) ∈ X × R : f(x) ≤ t} .

Mostre que f é s.c.i. se, e somente se, epi(f) é subconjunto fechado de X × R.

(e) Seja (fα)α∈Λ uma família de funçōes s.c.i.; mostre que a função definida como

f(x)
def.
= sup

α∈Λ
fα(x)

é semi-contínua inferiormente. [Dica: Como escrever o epígrafo de f em função dos epígrafos
de fα?]

3Lembramos que F subconjunto de um espaço métrico X é dito fechado se, e somente se, toda sequência (xn)n∈N ⊂
F que converge para um ponto x, tem-se que x ∈ F .
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Definição 1.3.2. Um subconjunto K ⊂ X é compacto se para toda cobertura aberta de K, ou
seja uma família (Ai)i∈I de abertos tais que K ⊂

⋃
i∈I

Ai, existe uma subfamília finita (Aik)
N
k=1 tal

que K ⊂
N⋃
k=1

Aik .

Um conjunto K ⊂ X é sequencialmente compacto se toda sequência (xn)n∈N ⊂ K admite uma
subsequência convergente para um ponto x⋆ ∈ K.

Ums das razões pelas quais escolhemos trabalhar com espaços poloneses é que nesses espaços
as noções de compacidade e compacidade sequencial coincidem, assim como as noções de semi-
continuidade e semi-continuidade sequencial.

Exercício 1.2. Mostre que um subconjunto K de um espaço métrico completo X é compacto se e
somente se é sequencialmente compacto.

Outra caracterização importante de compacidade em espaços métricos é via conjuntos totalmente
limitados.

Definição 1.3.3. Dizemos que um conjunto K ⊂ X é totalmente limitado se para todo ε > 0
existe um número finito de bolas de raio ε que cobrem K, ou seja existem pontos (xi)

N
i=1 ⊂ X tais

que

K ⊂
N⋃
i=1

B(xi, ε).

Exercício 1.3. Mostre que um subconjunto K de um espaço métrico completo X é compacto se e
somente se é fechado e totalmente limitado.

Com essas definições em mãos, podemos enunciar e provar o Teorema de Weierstrass num espaço
métrico geral, cuja prova é o argumento conhecido como o método direto do cálculo das variações.

Teorema 1.3.1 (Teorema de Weierstrass/Método direto do cálculo das variações). Seja uma função
f : X → R ∪ {+∞} semi-contínua inferiormente num espaço polonês X , e seja K ⊂ X um
subconjunto compacto. Se infK f < +∞, então existe x⋆ ∈ K tal que

f(x⋆) = inf
K
f = min

K
f.

Demonstração. Como infK f < +∞, pela definição de ínfimo, existe uma sequência minimizante,
isto é (xn)n∈N ⊂ K tal que

f(xn) −−−−→
n→∞

inf
K
f.

Podemos assumir sem perda de generalidade que xn → x ∈ K. De fato, como K é um subcon-
junto compacto de um espaço métrico completo, também é sequencialmente compacto, e portanto
existe uma subsequência convergente, não reindexada. Esta subsequência também é uma sequência
minimizante, logo obtemos da semi-continuidade inferior de f que

f(x⋆) ≤ lim inf
n→∞

f(xn) = inf
K
f.

Como x ∈ K, o ínfimo de f em K é atingido em x⋆.
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De modo geral, o problema de minimizar uma função f em todo o espaço X também é impor-
tante. Sem a hipótese de compacidade do espaço, necessitamos de hipóteses suplementares para
a função f que comumente corresponde à uma hipótese de coercividade da função, o que será
discutido no exercício seguinte.

Exercício 1.4. Dizemos que uma função f : X → R ∪ {+∞} é coerciva se seus sub-conjuntos de
nível são compactos, ou seja para todo ℓ ∈ R o conjunto {f ≤ ℓ} é compacto.

(a) Se X = Rd, então f é coerciva se, e somente se, f(x) → 0 quando x→ +∞.

(b) Dê um contra-exemplo de que a tese do item (a) não é verdade em geral.

(c) Seja uma função f : X → R ∪ {+∞} coerciva e semi-contínua inferiormente num espaço
polonês X . Se infX f < +∞, então existe x⋆ ∈ X tal que

f(x⋆) = inf
X
f = min

X
f.

Voltando ao problema que nos interessa, a formulação de Kantorovitch para o problema de
transporte ótimo, para aplicar as ideais discutidas até agora, é precisamos estudar o espaço das
medidas de Radon sob um espaço polonês X , em particular os critérios de semi-continuidade inferior
e de compacidade desses objetos.

1.4 O espaço das medidas de Radon

Geralmente, num curso de teoria da medida ou probabilidade, fixamos um espaço de medida
(Ω,F , µ) e o foco do estudo está nas propriedades de funçōes mensuráveis com respeito à σ-algebra
F . No entanto, diversas aplicações demandam uma maior flexibilidade, por exemplo no nosso pro-
blema de interesse, as variáveis em si são dadas por uma medida de probabilidade; no caso de
processos estocáticos a lei das variáveis aleatórias em questão pode ser vista como uma curva numa
classe de medidas de probabilidade.

Neste contexto, a alternativa é fixar uma σ-álgebra comum como “domínio” dessa classe de
medidas. Para isso, dado um espaço polonês X , fixamos a σ-álgebra de Borel B gerada pelos
abertos de X . Chamamos tais medidas de Borelianas ou de Borel, no entanto na definição de
medida de Radon que daremos em seguida, impomos mais condições de regularidade que serão
importantes para obter boas propriedades de compacidade.

Definição 1.4.1 (Medida de Radon). Seja X um espaço polonês. Uma medida de Radon µ em X
é uma medida de Borel finita em compactos, regular externa e interna, isto é:

• Para todo conjunto Borel A ⊂ X , µ(A) = inf{µ(U) : A ⊂ U, U aberto} (regularidade ex-
terna);

• Para todo conjunto Borel A ⊂ X , µ(A) = sup{µ(K) : K ⊂ A, K compacto} (regularidade
interna);

• Para todo compacto K ⊂ X , µ(K) < +∞.
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Note que essa definição faz sentido para um espaço topológico geral4, mas no caso de espaços
poloneses, toda medida Borel µ finita, ou seja µ(X ) < +∞ é regular, e portanto de Radon. Isso é
uma consequência do Teorema de Ulam, cuja prova será feita passo à passo no seguinte exercício.

Exercício 1.5. O Teorema de Ulam afirma que se µ é uma medida de Borel finita, não negativa,
num espaço polonês X , então para todo ε > 0, existe um compacto K ⊂ X tal que µ(X \K) < ε.

Exercício 1.6. Use o Teorema de Ulam para provar que toda medida de Borel num espaço polonês
é regular interna e externamente.

Dada qualquer medida de Radon µ, podemos definir a integral de uma função Borel mensurável
com respeito à µ da mesma forma que fazemos num curso tradicional de teoria da medida. O único
problema é que o conjunto de medida nula onde f não está bem definida varia com respeito à cada
medida µ. Para contornar isso, nos restringimos à funções contínuas ou semi-contínuas, já que
essas propriedades de continuidade são finalmente propriedades intrísecas da topologia métrica de
X . Dessa forma, para toda função f semi-contínua a quantidade

ˆ
X
f(x)dµ(x)

está bem definida para toda medida de Radon µ.
Isso significa que cada medida positiva e finita µ determina um funcional linear contínuo sobre

o espaço das funções contínuas e limitadas Cb(X )

Cb(X ) ∋ f 7→
ˆ
X
f(x)dµ(x) ≤ µ(X ) ∥f∥∞ ,

ou sobre um espaço de funções apropriado. De modo geral, nos interessamos pelos seguintes espaços
de funções

Cb(X )
def.
= {f ∈ C (X ) : ∥f∥∞ < +∞} contínuas e limitadas

Cc(X )
def.
= {f ∈ C (X ) : supp f é compacto } contínuas à supporte compacto

C0(X )
def.
=

{
f ∈ C (X ) :

para todo ε > 0 existe
K compato t.q.

|f(x)| < ε em X \K

}
que convergem para 0 no finito.

Exercício 1.7. Verifique que Cb(X ) ⊆ Cc(X ) ⊆ C0(X ), e temos igualdade se X é compacto.

Por outro lado, o teorema de representação de Riesz afirma que todo funcional linear, contínuo
sobre C0(X ) pode ser representado por uma medida de Radon usando a operação de integral como
produto de dualidade.

Teorema 1.4.1 (Teorema de Riesz). Seja X um espaço polonês. Todo funcional linear contínuo
L : C0(X ) → R é da forma

L(f) =

ˆ
X
f(x)dµ(x)

para uma única medida de Radon, com sinal, finita µ em X .

4As hipóteses mínimas para estudar tais objetos são de considerar X um espaço topológico Hausdorff.
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Dessa forma, podemos definir o conjunto das medidas de Radon finitas como o dual do espaço
de Banach C0(X ), i.e.

Mb(X )
def.
= (C0(X ))

⋆
,

o que também induz a norma de variação total

∥µ∥M (X )
def.
= sup

{∣∣∣∣ˆ
X
f(x)dµ(x)

∣∣∣∣ : f ∈ C0(X ), ∥f∥∞ ≤ 1

}
,

assim como a convergência fraca estrela, ou fraca-⋆, obtida através dessa dualidade. Dizemos que
uma sequência (µn)n∈N ⊂ Mb(X ) converge na topologia fraca estrela para µ ∈ Mb(X ), denotado
por µn

⋆−−−−⇀
n→∞

µ, se para todo f ∈ C0(X ),
ˆ
X
fdµn −−−−→

n→∞

ˆ
X
fdµ.

Ou seja, a topologia fraca estrela é a menor topologia para a qual a aplicação µ 7→
ˆ
X
f dµ é

contínua para toda f ∈ C0(X ).
Como o dual de um espaço de Banach, temos diretamente acesso ao teorema de Banach-Alaoglu-

Bourbaki que dá um princípio de compacidade para a bola unitária de Mb(X ):

Teorema 1.4.2. A bola unitário fechada

BM
def.
=
{
µ ∈ Mb(X ) : ∥µ∥M (X ) ≤ 1

}
é compacta com respeito à convergência fraca-⋆.

Estamos particularmente interessados no conjunto de medidas positivas e no conjunto de medi-
das de probabilidade

M+(X )
def.
= {µ ∈ Mb(X ) : 0 ≤ µ} , P(X )

def.
=
{
µ ∈ M+(X ) : ∥µ∥M (X ) = 1

}
.

Exercício 1.8. Seja µ ∈ M+(X ), prove que ∥µ∥M (X ) = µ(X ).

Exercício 1.9. Mostre que a aplicação µ 7→ ∥µ∥M (X ) é semi-contínua inferiormente para a topo-
logia fraca estrela, isto é, se µn

⋆−−−−⇀
n→∞

µ então

∥µ∥M (X ) ≤ lim inf
n→∞

∥µn∥M (X ).

[Dica: Use o exercício 1.1].

O exercício 1.9 mostra um fenômeno muito importante com respeito à convergência fraca estrela:
uma sequência de medidas convergindo nessa topologia pode perder massa no infinito. O que
significa que o espaço de medidas de probabilidade P(X ) não é um subconjunto fechado de Mb(X )
nessa topologia. Isso reduz muito a aplicabilidade direta do teorema 1.4.2 pois qualquer sub-
sequência convergente de P(X ) obtida com esse princípio de compacidade pode perder massa no
infinito de forma que seu limite não seja mais uma medida de probabilidade! No entanto, à esse
estágio do texto, ressaltamos que o leitor já tem todas as ferramentas necessárias para demonstrar a
existência de um plano de transporte ótimo em um caso particular (mais ainda assim muito usado)
do problema de Kantorovitch:
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Exercício 1.10. Suponha que X e Y são espaços métricos compactos, por exemplo X = Y = Ω um
fechado e limitado de Rd, e c é um custo contínuo. Prove que o problema de Kantorovitch admite
um plano de transporte ótimo.

Para contornar isso, introduzimos a noção de convergência fraca de medidas de probabilidade,
também chamada de convergência estreita pois não é de fato uma convergência fraca da análise
funcional, mas isso não importa muito.

Definição 1.4.2 (Convergência fraca de medidas). Uma sequência (µn)n∈N ⊂ P(X ) converge
fracamente para µ ∈ P(X ), denotado por µn −−−−⇀

n→∞
µ, se para toda função contínua e limitada

f ∈ Cb(X ), ˆ
X
fdµn −−−−→

n→∞

ˆ
X
fdµ.

Para essa noção de convergência temos o direito de usar a função constante igual à 1 como
função teste, logo se (µn)n∈N ⊂ P(X ) converge para µ na topologia estreita, então

1 = µn(X ) =

ˆ
X
1dµx −−−−→

n→∞

ˆ
X
1dµ = µ(X ),

e portanto µ ∈ P(X ). Essa será a topologia que em geral vamos tabalhar com o espaço de medidas
de probabilidade. Note que pelo exercício 1.7, quando X é um espaço compacto as topologias
estreita e fraca estrela coincidem e temos compacidade diretamente do teorema de Banach-Alaoglu,
valido para a tologia fraca estrela em espaços de Banach em geral. A conveniência disso é que P(X )
será automaticamente compacto quando X é compacto, se não for o caso teremos de desenvolver
ferramentas para trabalhar melhor com o topologia estreita.

1.5 Semi-continuidade inferior e compacidade em P(X )

Passamos agora ao estudo de critérios de semi-continuidade e compacidade com respeito à topologia
estreita. Note que como já discutimos que C0(X ) ⊆ Cb(X ), obter tais resultados para a topolo-
gia estreita nos dará automaticamente os mesmos resultados para a topologia fraca estrela. Por
definição, temos que se f ∈ Cb(X ), então automaticamente temos que o funcional

P(X ) ∋ µ 7→
ˆ
X
f(x)dµ(x)

é contínuo para a topologia estreita.
Podemos generalizar esse resultado para o caso em que f é s.c.i. através do resultado seguinte

Lema 1.5.1. Seja f : X → R ∪ {+∞} uma função s.c.i. e limitada inferiormente, então existe
uma sequência de funções (fk)k∈N satisfazendo as seguintes propriedades

• fk é Lipschitz contínua com constante k;

• fk forma uma sequência monótona, fk(x) ≤ fk+1(x) −−−−→
k→∞

f(x) para todo x ∈ X .
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Demonstração. Defina a função

f̄k(x)
def.
= inf

y∈X
f(y) + kdX (x, y).

Como f é limitada inferiormente, existe c ≥ 0 tal que f ≥ −c, e esse ínfimo definindo f̄k é sempre
maior que −∞. Vamos provar que f̄k é Lipschitz contínua com constante k. Dados dois pontos
x, x′ ∈ X quaisquer, usando a desigualdade triangular temos para todo y ∈ X que

f̄k(x) ≤ f(y) + kdX (y, x)

≤ f(y) + kdX (y, x′) + kdX (x′, x)

Tomando o ínfimo em y ∈ X , segue que

f̄k(x)− f̄k(x
′) ≤ kdX (x′, x).

Trocando o papel de x e x′, obtemos a desigualdade reversa, o que implica que f̄k é Lipschitz
contínua com constante k.

Além disso, temos que f̄k ≤ f̄k+1, pois para todo x ∈ X

f̄k(x) = inf
y∈X

f(y) + kdX (x, y) ≤ inf
y∈X

f(y) + (k + 1)dX (x, y) = f̄k+1(x).

Desse modo, a sequência
(
f̄k(x)

)
é monotoniamente crescente para todo x ∈ X e portanto converge,

de formas que podemos definir a quantidade

L = sup
k∈N

f̄k(x) = lim
k∈N

f̄k(x).

Como f̄k(x) ≤ f(x), assuma por contradição que L < f(x), segue que L < +∞. Pela definição
de ínfimo, tome uma sequência (xk)k∈N ⊂ X tal que

f(xk) + kdX (x, xk) ≤ f̄k(x) +
1

k
.

Logo como f ≥ −c, temos que

dX (x, xk) ≤
L+ c+ 1/k

k
−−−−→
k→∞

0.

Mas então, pela semi-continuidade inferior de f , obtemos que

f(x) ≤ lim inf
k→∞

f(xk) + kdX (x, xk) ≤ lim
k→∞

f̄k(x) + 1/k ≤ f(x).

Disso, segue que f̄k(x) −−−−→
k→∞

f(x).

Para concluir a prova, podemos definir fk
def.
= min{f̄k, k}, o que preserva as propriedades ante-

riores e garante que fk é limitada.

Usando esse resultado, nós podemos demonstrar o resultado de semi-continuidade desejado.
Com um pouco mais de trabalho podemos provar o teorema de Portmanteau, que dá várias carac-
terizações equivalentes da convergência estreita.
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Teorema 1.5.1 (Portmanteau). Seja (µn)n∈N ⊂ P(X ). A seguintes afirmações são equivalentes:

1. µn −−−−⇀
n→∞

µ;

2. para toda função s.c.i. limitada inferiormente f : X → R ∪ {+∞} temos que
ˆ
X
fdµ ≤ lim inf

n→∞

ˆ
X
fdµn.

3. para toda função s.c.s. limitada superiormente g : X → R ∪ {+∞} temos que

lim sup
n→∞

ˆ
X
gdµn ≤

ˆ
X
gdµ.

4. para todo conjunto aberto A ⊆ X vale que

µ(A) ≤ lim inf
n→∞

µn(A).

5. para todo conjunto fechado F ⊆ X vale que

lim inf
n→∞

µn(F ) ≤ µ(F ).

6. para todo conjunto mensurável E ⊆ X tal que µ(∂E) = 0 vale que

µn(E) −−−−→
n→∞

µn(E).

Demonstração. Os items (2) e (3), e (4) e (5) são equivalentes entre si por meio da função comple-
mentar.

A implicação (1) =⇒ (2) segue diretamente do Lema 1.5.1 e da definição de convergência
estreita. Para ir de (2) =⇒ (1), basta notar que se f ∈ Cb(X ), então f é s.c.i. e s.c.s., logo
aplicando (2) e (3) obtemos a igualdade necessária para a convergência estreita.

A implicação (2) =⇒ (4) é obtida aplicando o item (2) à função f = χA, que é s.c.i. para
todo aberto A. Para a implicação inversa, podemos assumir que f ∈ Cb(X ), novamente usando o
Lema 1.5.1.

Para isso, comece com f ∈ Cb(X ), de modo que f(X ) ⊂ [a, b]. Seja uma partição do intervalo
[a, b] dada por

a = t0 < t1 < · · · < tm = b.

Como µ é uma medida de Radon finita, existe apenas um número finito de valores t tais que
µ(f−1({t})) > 0. Portanto, podemos escolher a partição de modo que µ(f−1({ti})) = 0 para todo
i = 1, . . . ,m− 1 e ti+1 − ti < 1/N para todo i.

Defina os conjuntos

Bi
def.
= {x ∈ X : ti < f(x) ≤ ti+1} = f−1(ti, ti+1], i = 1, . . . ,m− 1,

assim como B0
def.
= {x ∈ X : t0 ≤ f(x) ≤ ti+1}.



1.5. SEMI-CONTINUIDADE INFERIOR E COMPACIDADE EM P(X ) 15

Os Bi sendo todos disjuntos e ∪Bi = X , por construção, podemos então definir

fN (x)
def.
=

m−1∑
i=0

ai1Bi
(x), com ai

def.
= inf

Ai

f.

Como f é limitada os ínfimos definindo ai são sempre finitos, mesmo que não sejam atingidos, de
modo que

fN (x) ≤ f(x),

e fN (x) −−−−→
N→∞

f(x) para todo x ∈ X , pois f é uma função contínua.

Defina também Ai
def.
= {x ∈ X : ti < f(x) < ti+1}, todos conjuntos abertos. Portanto, aplicando

(4) a cada conjunto Ai, temos que

µ(Bi) = µ(Ai ∪ {f = ti+1}) = µ(Ai) ≤ lim inf
n→∞

µn(Ai) ≤ lim inf
n→∞

µn(Bi).

Além disso, pelo lema de Fatou temos que

ˆ
X
fNdµ =

m−1∑
i=0

aiµ(Bi) ≤
m−1∑
i=0

ai lim inf
n→∞

µn(Bi)

≤ lim inf
n→∞

m−1∑
i=0

aiµn(Bi) = lim inf
n→∞

ˆ
X
fNdµn ≤ lim inf

n→∞

ˆ
X
fdµn.

Finalmente, fazendo N → ∞ e usando o Teorema da Convergência Monótona, concluímos que
ˆ
X
fdµ ≤ lim inf

n→∞

ˆ
X
fdµn,

o que mostra (1) para f ∈ Cb(X ).
Para tratar o caso f s.c.i., basta aplicar o Lema 1.5.1 e o caso f ∈ Cb(X ), como feito anterior-

mente.

O segundo ingrediente que precisamos para estudar a existência de problemas variacionais em
P(X ) é a compacidade. Como discutimos anteriormente, o que impede que o teorema de Banach-
Alaoglu-Bourbaki seja um critério de compacidade é o fenômeno de perda de massa no infinito
quando passamos ao limite. A ideia central do teorema de Prokhorov é combinar um critério que
evite esse fenômeno de perda de massa no infinito, com a compacidade obtida diretamente da
topologia fraca-⋆.

Vamos introduzir uma pequena notação, porém muito útil, a de restrição de medidas. Dada
uma medida de Radon µ e um conjunto boreliano A, definimos a medida de restrição de µ em A
como

µ A(B)
def.
= µ(A ∩B), para todo boreliano B.

Teorema 1.5.2 (Prokhorov). Se X é um espaço polonês, então um subconjunto K ⊂ P(X ) é
relativamente (sequencialmente) compacto para a topologia estreita se, e somente se, é estreito, isto
é: para todo ε > 0, existe um compacto Kε ⊂ X tal que

µ(Kε) ≥ 1− ε, ∀µ ∈ K.
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Prova Teorema 1.5.2: K estreito =⇒ K pré-compacto. Seja K um conjunto (sequencialmente) com-
pacto na topologia estreita. Como X é separável, existe um subconjunto denso e enumerável (xi)i∈N.
Vamos provar que para todo j ∈ N, existe kj tal que

µ

X \
kj⋃
i=1

B(xi, 1/j)

 < 2−jε para toda µ ∈ K. (1.1)

Uma vez que isso esteja provado o resultado segue, pois definindo

K
def.
=

∞⋂
j=1

kj⋃
i=1

B(xi, 1/j),

note que K é compacto, pois é completo e totalmente limitado. Além disso

µ(X \K) ≤
∞∑
j=1

µ

X \
kj⋃
j=1

B(xi, 1/j)

 <

∞∑
j=1

2−jε = ε, para todo µ ∈ K.

Vamos então provar (1.1) por contradição. Suponha que exista j0 e uma sequência (µn)n∈N ⊂ K
tal que

µn

(
X \

n⋃
i=1

B(xi, 1/j0)

)
≥ 2−j0ε.

Em particular, fixado um k ∈ N, se n > k, então

µn

(
X \

k⋃
i=1

B(xi, 1/j0)

)
≥ µn

(
X \

n⋃
i=1

B(xi, 1/j0)

)
≥ 2−j0ε.

Por compacidade, existe uma subsequência de (µn)n∈N que converge na topologia estreita para µ.
Segue então do teorema de Portmanteau 1.5.1 que

µ

(
X \

k⋃
i=1

B(xi, 1/j0)

)
≥ lim sup

n→∞
µn

(
X \

k⋃
i=1

B(xi, 1/j0)

)
≥ 2−j0ε,

uma vez que para todo k ∈ N o conjunto X \
⋃k
i=1B(xi, 1/j0) é fechado. Como esta sequência é de

conjuntos encaixados, obtemos da densidade de (xi)i∈N que

⋂
k∈N

X \
k⋃
i=1

B(xi, 1/j0) = ∅.

Finalmente, obtemos uma contradição fazendo k → ∞ já que

µ

(
X \

ki⋃
i=1

B(xi, 1/j0)

)
−−−−→
ki→∞

0

para toda medida de probabilidade.
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Prova Teorema 1.5.2: K pré-compacto =⇒ K estreito. Primeiro mostramos que se o conjunto K é
estreito, então ele é compacto. Nesse caso, existe uma sequência de compactos Kk de X tal que

ωk
def.
= sup

µ∈K
µ(X \Kk) ≤

1

k
−−−−→
k→∞

0. (1.2)

Em particular, podemos escolher (Kk)k∈N como uma sequência monótona, ou seja Kk ⊂ Kk+1 para
todo k. De fato, dada uma tal sequência, podemos definir uma segunda por indução como

K ′
1 = K1 e K ′

k+1 = K ′
k ∪Kk+1.

Como a união finita de compactos é compacta, a nova sequência é formada por conjuntos compactos
encaixados ainda satisfazendo a condição (1.2).

Considere agora uma sequência (µn)n∈N, vamos construir um ponto de acumulação para essa
sequência. Dado k ∈ N, defina

µn,k
def.
= µn Kk.

Logo fixado k ∈ N, temos que (µn,k)n∈N está contido na bola unitária de M (Kk). Pelo teorema de
Banach-Alaoglu-Bourbaki, existe uma subsequência σ : N → N tal que

µσ(n),k
⋆−−−−⇀

n→∞
µk para todo k ∈ N,

onde, como cada Kk é compacto não há perda de massa no infinito, 1− ωk ≤ µk(X ) ≤ 1. A nova
sequência

(
µk
)
k∈N é monótona, ou seja µk ≤ µk+1 para todo k, no sentido de medidas. Em outras

palavras, para todo 0 ≤ ϕ ∈ C0(X ) seque que
ˆ
X
ϕdµk ≤

ˆ
X
ϕdµk+1.

Isso é uma consequência direta da inclusão Kk ⊂ Kk+1 e da monotonia da integral, o que implica
que µn,k ≤ µn,k+1 para n fixo.

Dessa forma, para todo 0 ≤ ϕ ∈ Cb(X ), temos que a sequência de números reais
ˆ
X
ϕdµk

é monótona crescente e limitada superiormente por ∥ϕ∥∞. Podemos então definir um funcional
linear limitado sobre Cb(X ), e em particular sobre C0(X ), dado por

Lϕ
def.
= lim

k→∞

ˆ
X
ϕdµk.

Pelo teorema de representação de Riesz, existe uma medida de Radon 0 ≤ µ tal que

Lf =

ˆ
X
fdµ, para toda f ∈ C0(X ).

Por outro lado, pela definição de L, segue que µk converge para µ também na topologia estreita e
portanto podemos usar a constante 1 como função teste, de formas que

1 = lim
k→+∞

1− ωk ≤ lim
k→+∞

µk(X ) = µ(X ) ≤ 1.
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Logo µ é uma medida de probabilidade como queríamos.
Basta provar que µσ(n) −−−−−⇀

n→∞∞
µ. Para isso, tome φ ∈ Cb(X ) e considere

∣∣∣∣ˆ
X
φdµσ(n) −

ˆ
X
φdµ

∣∣∣∣ ≤ ∣∣∣∣ˆ
X
φdµσ(n) −

ˆ
X
φdµσ(n),k

∣∣∣∣︸ ︷︷ ︸
def.
= (i)

+

∣∣∣∣ˆ
X
φdµσ(n),k −

ˆ
X
φdµk

∣∣∣∣︸ ︷︷ ︸
def.
= (ii)

+

∣∣∣∣ˆ
X
φdµk −

ˆ
X
φdµ

∣∣∣∣︸ ︷︷ ︸
def.
= (iii)

Por definição de Kk o primeiro termo pode ser majorado como

(i) ≤ ∥φ∥∞ µσ(n)(X \Kk) ≤ ∥φ∥∞ ωk → 0.

O segundo termo vai para 0 quando n → ∞, por definição de µk e pelo fato de que em conjuntos
compactos, a convergência fraca-⋆ coincide com a convergência estreita. Finalmente, o terceiro
termo (iii) converge para 0 por definição de µ.

Observamos que no teorema 1.5.2, o conceito de compacidade utilizado é o de compacidade
sequencial. Isso não implica em perda alguma de generalidade pois a convergência estreita é metri-
zável. Uma das possíveis métricas sendo inclusive a distância de Wasserstein, definida através da
teoria de transporte ótimo como veremos mais à frente.

Note também que quando o conjunto K é unitário, e portanto obviamente compacto pelo critério
de compacidade por sequências, i.e. K = {µ}, a condição de ser estreito é justamente a conclusão
do teorema de Ulam dado no exercício 1.5.

Terminamos essa seção com uma condições suficiente para que uma família de medidas em
P(Rd) seja estreito através de uma majoração uniforme de seus momentos. O momento de ordem
p, ou p-momento de uma medida µ ∈ P(Rd) é definido como

Mp(µ)
def.
=

ˆ
Rd

|x|ddµ(x). (1.3)

Note que, se X é uma variável aleatória com lei µ, temos que Mp(µ) = E [|X|p].

Proposição 1.5.1. Seja K ⊂ P(Rd) tal que C def.
= sup

µ∈K
Mp(µ) < +∞. Então K é estreito.

Demonstração. Pelo teorema de Heine-Borel, a bola fechada de raio R e centrada em 0, BR, é
compacta em Rd. Além disso, para todo µ ∈ K temos que

Rpµ(Rd \BR) ≤
ˆ
Rd\BR

|x|pdµ(x) ≤Mp(µ) ≤ C.

Logo, dado um ε > 0, basta tomar Kε = BR tal que C/Rp < ε.
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1.6 Existência de planos de transporte ótimo
Usando os resultados anteriores o teorema de existência de um plano de transporte ótimo se torna
uma aplicação direta do método direto do cálculo das variações. Primeiramente demonstramos que
conjunto to planos de transporte à marginais fixas é estreito, e portanto compacto pelo teorema de
Prokhorov.

Lema 1.6.1. Dados µ ∈ P(X ) e ν ∈ P(Y), o conjunto dos planos de transporte Π(µ, ν) com
marginais µ e ν é compacto na topologia estreita de P(X × Y).

Demonstração. Pela compacidade dos conjuntos unitários {µ} e {ν} em P(X ),P(Y), temos pela
recíproca do teorema de Prokhorov que para todo ε > 0 existem compactos K ⊆ X e L ⊆ tais que

µ(X \K) < ε/2 e ν(X \ L) < ε/2.

Dessa forma, considere o compacto K × L de X × Y, de forma que

(X × Y) \ (K × L) ⊆ (X × (Y \ L)) ∪ ((X \K)× Y)

e portanto para γ ∈ Π(µ, ν) temos que

γ ((X × Y) \ (K × L)) ≤ γ (X × (Y \ L)) + γ ((X \K)× Y) = µ(X \K) + ν(Y \ L) < ε.

Como o compacto K ×L confere a estimação desejada para todos os planos de transporte γ, segue
que Π(µ, ν) é compacto.

Dessa forma, o resultado de existência sai diretamente aplicando-se o método direto do cálculo
das variações, Teorema 1.3.1.

Teorema 1.6.1. Dados µ ∈ P(X ), ν ∈ P(Y) e c : X × Y → R+ semi-contínua inferiormente, o
problema de Kantorovitch admite um plano de transporte ótimo.

Demonstração. O resultado é uma aplicação direta do teorema 1.3.1 com o critério de semi-
continuidade de 1.5.1 e a compacidade de Π(µ, ν) do Lemma 1.6.1.


