Capitulo 1

O problema de Monge-Kantorovitch

1.1 Introducao

Em 1781, o matematico francés Gaspar Monge propos uma formulagao matematica para a seguinte
pergunta:

Dada uma distribuicao de recursos e uma distribuicio de demandas, como trans-
portar tais recursos a demanda de forma a realizar o minimo trabalho possivel?

A sua intuigéo original era que tais recursos seriam de fato materiais de construgao distribuidos
num terreno, enquanto que a demanda seria uma distribui¢ao desejada dos recursos a disposicao
no mesmo terreno, por exemplo para a construgao de uma casa.

De forma geral, podemos tomar um espago ambiente bem mais abstrato onde se distribuem tais
recursos e demandas. Sendo assim, vamos considerar que os espagos ambiente onde se distribuem
tais recursos e demandas sao dados por um espagos métricos (X, dx) e (), dy). Faremos a hipotese
mais A frente que estes s@o espagos poloneses, ou seja metrizaveis, completos e separaveis (que admi-
tem um subconjunto denso e enumeravel). Sendo assim, a intui¢gdo de Monge é recuperada tomando
X e ) como o espaco euclidiano R?, com a topologia usual. No que diz respeito as distribuicoes
de recursos e demandas, na linguagem moderna da teoria da medida, estas sao representadas por
medidas de probabilidade € Z(X) e v € 2(Y).

Segundo a intuigao original de Monge, o trabalho de levar uma unidade de massa de um ponto z
para um ponto y seria dado pela distancia euclidiana |z —y|, mas ainda na filosofia de considerar um
problema de transporte de massa abstrato, podemos imaginar que o custo unitario de transportar
uma unidade de massa de x € X para y € ) seria dado por uma fungao

c:(z,y) € X x Y c(x,y) € R

Por outro lado, o transporte em si é realizado por um mapa mensuravel cujo dominio é o espago de
recursos e imagem dada pelo espago de demandas T : X — ), satisfazendo a restricao de realizar
o transporte de i a v. Na linguagem moderna da teoria da medida isso quer dizer que a medida
de transporte de T' sobre i, Ty, também conhecida na literatura em inglés como medida de push-
forward, deve coincidir com v. Em outras palavras, para todo conjunto Borel mensuravel A C Y
deve-se ter que

Ty(A) " W(T1(4)) = v(A).
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Juntando todos esses elementos, o problema proposto é portanto escrito numa linguagem mo-

derna como

inf / c(x,T(z))dp(z). (M)

Typ=v [y

No caso X = Y = R? e ¢(x,y) = |z — y|, Monge provou que se um mapa T é 6timo, entdo nio
ha cruzamentos entre os trajetos de transporte, o que em si ja é uma propriedade interessante,
mas ele nao provou a existéncia de um mapa 6timo, do mesmo jeito que a comunidade de calculo
das variagoes da época nao havia comegado a se perguntar quando, e em quais classes de fungoes,
problemas variacionais admitem um minimizante.

Por outro lado, mesmo a existéncia de um mapa 71" que realize o transporte entre duas medidas
quaisquer p e v é um problema nao trivial. De fato, imagine que p admita um atomo num ponto x,
ou seja p({x}) > 0, para todo mapa mensuravel 7' a medida de transporte Tyu conterd um atomo
no ponto T(x) Logo se v nao contiver dtomos, nao existe nenhum mapa que faca o transporte
de pu & v! Veremos que esse problema é facilmente contornavel se escolhermos uma boa classe de
medidas p. Na verdade é suficiente que p nao contenha dtomos para que exista um mapa fazendo
o transporte de p para qualquer medida v, mas infelizmente esse nao é a tnica dificuldade da
formulagao de Monge. A restricao de fixar Ty = v é extremamente ndo linear o que a torna muito
mais dificil de passar ao limite, sendo entdao o maior impedimento em aplicar o método direto do
cdlculo das variacdes que veremos mais 4 frente nesse capitulo.

1.2 Uma alternativa probabilistica: a formulacao de Kanto-
rovitch

Como vimos anteriormente, um dos problemas centrais na formulacao de Monge é a existéncia de
um mapa que realize o transporte de uma medida para outra. Também discutimos que basta que
a medida inicial nao contenha &dtomos para que um tal mapa exista, entao uma alternativa é fixar
um espago de probabilidade do comego (€2, F,P) tal que a medida de probabilidade P ndo contenha
atomos, de forma que para qualquer par (u,v) € Z(X) x L()) existam mapas X : Q@ — X e
Y : Q — Y tais que

XeP=p, YiP=u.

Em outras palavras, para cada par de leis de probabilidade u,v, existe um par de varidveis
aleatorias X, Y com estas respectivas leis, também escrevemos X ~ p e Y ~ v. Na notagao de
probabilidade escrevemos: para todo conjunto boreliano A C X

P({X € A}) = u(4) = B(X'(4)).

Dessa forma, podemos escrever uma formulagao probabilistica do problema de Monge (M), também
conhecida como o problema de Kantorovitch

in  Ele(X,Y)].
i [c(X,Y)]

Essa formulacao é equivalente a considerarmos um problema de minimizagao sobre todas as
medidas de probabilidade no espaco produto X x Y cujas marginais sao p e v, os chamados planos
de transporte. Em outras palavras consideramos o espago

(,v) 2 {7 € 2(X x V) (mo)yy =, (m)yy = v,
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onde mo = 7y : (2,y) = x e m =7y : (z,y) — y. A condi¢do (m0),y = p portanto ¢ equivalente a
w(B) = (B x Y) para todo boreliano B C X,

e dizemos que p é uma marginal de . De forma analoga, a condigao (Wl)ﬁ’y = v diz que v é a outra
marginal de . Dessa forma, o problema de Kantorovitch pode ser escrito em termos de planos de
transporte como

min c(x,y)dy(z,y) = min E[¢(X,Y)]. K
i [ cn ey = min | Be(XY) (K)

Dessa formulagao, fazemos as seguintes observagoes:

e A formulagao (K) nfo tem mais o problema de inexisténcia de um competidor admissivel, pois
a medida produto p ® v pertence sempre & II(u, v), logo o conjunto de planos de transporte
admissiveis é sempre nao vazio.

e Qualquer mapa de transporte T" que realize o transporte de ;1 & v induz um plano de transporte
v = (id, T)yp € I(p, v). Dessa forma

min (K) < inf (M).

Portanto, se um plano de transporte 6timo é da forma ~r para algum mapa T, entdao T é um
mapa 6timo para o problema de Monge. De fato, esse é o caso, temos que

inf (M) < /X c(z, T(x))dp(z) = min (K) < inf (M).

Veremos mais a frente que sob certas hipoteses sobre a medida p e a fungao custo ¢, um plano
de transporte 6timo é sempre da forma ~p.

e Note que por linearidade da integral, o funcional v +— cdy é linear; enquanto que o
XxY
conjunto de planos de tranporte II(u,v) é convexo. A formulagao (K) se torna entdo um

problema de minimizagao linear sobre um conjunto convexo, o que facilita muito a analise de
existéncia.

Portanto, a estratégia natural para obter existéncia de um mapa de transporte 6timo para
o problema de Monge ¢é inicialmente se apoiar sobre os resultados mais facilmente obtidos
para o problema de Kantorovitch e em seguida utilizar as condigoes de otimalidade para esse
problema para mostrar que o plano de transporte étimo é da forma vy para algum mapa T'.

Por isso nosso foco seré de nos concentrar inicialmente nos resultados fundamentais da topologia
de espagos poloneses e das medidas de probabilidade sobre tais espagos, em particular no Teorema
de Weierstrass que garante existéncia de minimizantes de fun¢oes semi continuas inferiormente em
conjuntos compactos, e cuja prova é essencialmente o argumento conhecido como o método direto
do calculo das variagoes. Isso culminard em um teorema de existéncia com hipéteses minimas para
o problema de Kantorovitch. Em seguida, vamos explorar a estrutura do problema de Kantorovitch
como a minimizacao de um funcional linear num conjunto convexo, para isso vamos desenvolver
ferramentas de anélise convexa que nos dard muita informacao quanto a estrutura de planos de
transporte 6timo. Tudo isso, nos permitira atacar o problema de Monge.
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1.3 O método direto do calculo das variacoes em espacos mé-
tricos

O objetivo dessa sessao nao é de construir toda a teoria de espagos métricos, uma vez que ja existem
excelentes referéncias para o assunto, em particular em literatura matematica em portugués.

O método direto do calculo das variagoes:
Geralmente, em cursos de analise na reta, é apresentado o Teorema de Weierstrass que afirma:

Seja f : [a,b] = R uma fungio continua, entio existem pontos T.,x* € l|a,b
atingindo o infimo e o supremo de f no intervalo [a,b], ou seja,
f(zy) = min f(z), f(z*)= max f(z).
z€[a,b) x€[a,b)

Demonstracao. De fato, como f é continua num intervalo compacto, entao f é limitada, logo o
conjunto f([a,b]) C R é limitado. Portanto, o supremo e o infimo de f([a,b]) existem. Seja
m = inf f([a,b]), entdo existe uma sequéncia (z,),.y C [a,b] tal que f(z,) — m. Como [a,b] &
compacto, entdo existe uma subsequéncia (., ) keN convergente para algum ponto x, € [a,b]. Pela
continuidade de f, temos que

k— oo k— 400

fzy) = f( lim xnk> = lim f(x,,)=m.
De forma anéloga, existe um ponto z* tal que f(2*) = max f([a, ]). O

A prova é simples e elegante, no entanto, as propriedades fundamentais que garantem a mesma
conclusao sdo a nocgao de semi-continuidade e compacidade, que se estendem sem grandes dificul-
dades para espagos métricos gerais.

Um espago métrico é um conjunto X munido de uma fungéo d : X x X — [0, +00), chamada de
métrica ou distancia, que satisfaz as seguintes propriedades:

e d(z,y) =0 se e somente se x = y;
e d(z,y) = d(y,z) para todo z,y € X;
o d(z,z) <d(x,y)+ d(y, z) para todo z,y, z € X (desigualdade triangular).

Estamos particularmente interessados em espacos poloneses, isto é métricos completos e sepa-
raveis. Um espago métrico é dito completo se toda sequéncia de Cauchy converge para um ponto
do espaco.! Por outro lado, um espaco métrico é dito separavel se existe um subconjunto denso
enumerével.?

A semi-continuidade e compacidade sdo propriedades topologicas que estdo normalmente em
competicao entre si; propriedades de continuidade sao favorecidas por nogoes de convergéncia (to-
pologias) mais fracas, mais faceis de serem verificadas, enquanto que a compacidade em geral ne-
cessita mais estrutura para essa nogao de convergéncia. Em seguida vamos relembrar os conceitos
principais da topologia de espagos métricos.

1Lembramos que uma sequéncia (:L‘n)neN C X é dita de Cauchy se para todo € > 0 existe N € N tal que para
todo m,n > N temos d(xn,Tm) < €.

20u seja, existe um conjunto D = (Zn)peny € X tal que para todo z € X' e todo € > 0 existe n € N tal que
d(z,zn) < &.
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Definigao 1.3.1. Um fungdo f : X — R U {400} é semi-continua inferiormente (s.c.i.) se seus
sub-niveis sao fechados, ou seja para todo ¢ € R o conjunto

{(f<th={zex:f(x) <t}

é fechado.
Uma funcdo f : X — RU {400} é sequencialmente semi-continua inferiormente se para toda
sequéncia (), .y C X convergente para r, € X temos

n—-+o00

f(zy) < liminf f(x,) < inf {L : f(zn,,) T L, }

=t (inf flon)).

n—-+oo \ m>n

A equivaléncia das nogoes de semi-continuidade é uma propridade geral da topologia de espagos
métricos e vem da caracterizacio de conjunto fechado via sequéncias® O leitor é convidado & verificar
essa equivaléncia e demais propriedades de fungoes semi-continuas inferiormente.

Exercicio 1.1. Seja f : X — R U {4+o00} uma fun¢do s.c.i., o dominio de f ¢é definido como
dom f = {zx € X : f(x) < +oo}.

(a) Prove que, se z € dom f entdo para todo £ > 0, existe uma vizinhanga aberta V' de z tal que

f(y) > f(x) —e, paratodoy € V.

(b) Se f(z) = +o0, entdo para todo M > 0, existe uma vizinhanca aberta V de x tal que

f(y) > M, para todo y € V.

(¢) As propriedades dos itens anteriores nao necessitam da topologia de espagos métricos. Mostre
que semi-continuidade inferior e semi-continuidade inferior por sequéncias sao equivalentes
em um espago métrico X.

(d) O epigrafo de uma funcao f é definido como

epi(f) = {(z,t) € X x R: f(x) <t}
Mostre que f é s.c.i. se, e somente se, epi(f) é subconjunto fechado de X x R.

(e) Seja (fa)ocp uma familia de fungoes s.c.i.; mostre que a funcao definida como

(@) = sup fo(@)

acA

é semi-continua inferiormente. [Dica: Como escrever o epigrafo de f em funcgao dos epigrafos
de fo?]

3Lembramos que F' subconjunto de um espaco métrico X é dito fechado se, e somente se, toda sequéncia (n),en C
F' que converge para um ponto z, tem-se que x € F'.
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Definigao 1.3.2. Um subconjunto K C X é compacto se para toda cobertura aberta de K, ou

de abertos tais que K C U A;, existe uma subfamilia finita (zéll»k)]k\]:1 tal

icl

seja uma familia (A;),.;

N
que K C U A, .
k=1
Um conjunto K C X é sequencialmente compacto se toda sequéncia (z,), .y C K admite uma
subsequéncia convergente para um ponto x, € K.

Ums das razoes pelas quais escolhemos trabalhar com espagos poloneses é que nesses espagos
as nocoes de compacidade e compacidade sequencial coincidem, assim como as nocoes de semi-
continuidade e semi-continuidade sequencial.

Exercicio 1.2. Mostre que um subconjunto K de um espago métrico completo X’ é compacto se e
somente se é sequencialmente compacto.

Outra caracterizagdo importante de compacidade em espagos métricos é via conjuntos totalmente
limitados.

Definicao 1.3.3. Dizemos que um conjunto K C X é totalmente limitado se para todo € > 0
existe um numero finito de bolas de raio € que cobrem K, ou seja existem pontos (xz)fv:l C X tais

que
N

K C U B(x;,€).
i=1
Exercicio 1.3. Mostre que um subconjunto K de um espago métrico completo X é compacto se e
somente se é fechado e totalmente limitado.

Com essas defini¢goes em maos, podemos enunciar e provar o Teorema de Weierstrass num espago
métrico geral, cuja prova é o argumento conhecido como o método direto do céalculo das variagoes.

Teorema 1.3.1 (Teorema de Weierstrass/Método direto do calculo das variagoes). Seja uma fun¢ao
f X = RU{+oo} semi-continua inferiormente num espago polonés X, e seja K C X um
subconjunto compacto. Se infi f < 400, entdo existe x, € K tal que

f(zy) = i%ff = mlén f.

Demonstra¢ao. Como infg f < 400, pela definicao de infimo, existe uma sequéncia minimizante,
isto & (7,,),,cn C K tal que
fx,) —— inf f.
n—oo K

Podemos assumir sem perda de generalidade que z,, — = € K. De fato, como K é um subcon-
junto compacto de um espago métrico completo, também é sequencialmente compacto, e portanto
existe uma subsequéncia convergente, nao reindexada. Esta subsequéncia também é uma sequéncia
minimizante, logo obtemos da semi-continuidade inferior de f que

f(zy) < liminf f(x,) = i}l{f I

n— oo

Como z € K, o infimo de f em K é atingido em x,. O
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De modo geral, o problema de minimizar uma funcao f em todo o espago X também é impor-
tante. Sem a hipotese de compacidade do espago, necessitamos de hipdteses suplementares para
a funcao f que comumente corresponde a uma hipotese de coercividade da fungao, o que seré
discutido no exercicio seguinte.

Exercicio 1.4. Dizemos que uma fungao f : X — R U {400} é coerciva se seus sub-conjuntos de
nivel sdo compactos, ou seja para todo £ € R o conjunto {f < ¢} é compacto.

(a) Se X = R? entdo f é coerciva se, e somente se, f(z) — 0 quando  — +oo.
(b) Dé um contra-exemplo de que a tese do item (a) nao é verdade em geral.

(c) Seja uma fungao f : X — R U {+oo} coerciva e semi-continua inferiormente num espago
polonés X. Se infy f < 400, entdo existe z, € X tal que

flzy) = igff = m)én f.

Voltando ao problema que nos interessa, a formulagao de Kantorovitch para o problema de
transporte 6timo, para aplicar as ideais discutidas até agora, é precisamos estudar o espaco das
medidas de Radon sob um espaco polonés X', em particular os critérios de semi-continuidade inferior
e de compacidade desses objetos.

1.4 O espaco das medidas de Radon

Geralmente, num curso de teoria da medida ou probabilidade, fixamos um espaco de medida
(Q, F, ) e o foco do estudo esta nas propriedades de fungoes mensuraveis com respeito a o-algebra
F. No entanto, diversas aplicacoes demandam uma maior flexibilidade, por exemplo no nosso pro-
blema de interesse, as variaveis em si sao dadas por uma medida de probabilidade; no caso de
processos estocaticos a lei das variaveis aleatorias em questao pode ser vista como uma curva numa
classe de medidas de probabilidade.

Neste contexto, a alternativa é fixar uma o-algebra comum como “dominio” dessa classe de
medidas. Para isso, dado um espago polonés X, fixamos a o-algebra de Borel % gerada pelos
abertos de A. Chamamos tais medidas de Borelianas ou de Borel, no entanto na definicao de
medida de Radon que daremos em seguida, impomos mais condigoes de regularidade que serao
importantes para obter boas propriedades de compacidade.

Defini¢ao 1.4.1 (Medida de Radon). Seja X um espaco polonés. Uma medida de Radon p em X
¢ uma medida de Borel finita em compactos, regular externa e interna, isto é:

e Para todo conjunto Borel A C X, pu(A) = inf{u(U) : A C U, U aberto} (regularidade ex-
terna);

e Para todo conjunto Borel A C X, u(A) = sup{u(K) : K C A, K compacto} (regularidade
interna);

e Para todo compacto K C X, u(K) < +o0.
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Note que essa definicdo faz sentido para um espaco topoldgico geral?, mas no caso de espacos
poloneses, toda medida Borel p finita, ou seja u(X') < 400 é regular, e portanto de Radon. Isso é
uma consequéncia do Teorema de Ulam, cuja prova seré feita passo a passo no seguinte exercicio.

Exercicio 1.5. O Teorema de Ulam afirma que se p é uma medida de Borel finita, ndo negativa,
num espago polonés X, entao para todo £ > 0, existe um compacto K C X tal que u(X \ K) < ¢.

Exercicio 1.6. Use o Teorema de Ulam para provar que toda medida de Borel num espago polonés
é regular interna e externamente.

Dada qualquer medida de Radon p, podemos definir a integral de uma fungdo Borel mensuravel
com respeito a p da mesma forma que fazemos num curso tradicional de teoria da medida. O tdnico
problema é que o conjunto de medida nula onde f nao esta bem definida varia com respeito & cada
medida . Para contornar isso, nos restringimos a fungoes continuas ou semi-continuas, ji que
essas propriedades de continuidade sao finalmente propriedades intrisecas da topologia métrica de
X. Dessa forma, para toda funcdo f semi-continua a quantidade

/X f(2)dp(z)

esta bem definida para toda medida de Radon p.
Isso significa que cada medida positiva e finita 1 determina um funcional linear continuo sobre
o espago das fungoes continuas e limitadas %, (X)

GX) 3 f /X F@)du(z) < u(®) £l

ou sobre um espaco de fungoes apropriado. De modo geral, nos interessamos pelos seguintes espagos
de funcgoes

G(X) = {f € C(X): | f|l., < +oo} continuas e limitadas
C(X) = {f € €(X) : supp f é compacto } continuas a supporte compacto

para todo € > 0 existe

o (X def'{ € €(X): K compato t.q. } ue convergem para 0 no finito.
o(X) feex) pscompate a0 d gem p

Exercicio 1.7. Verifique que 6, (X) C 6.(X) C %o(X), e temos igualdade se X é compacto.

Por outro lado, o teorema de representagao de Riesz afirma que todo funcional linear, continuo
sobre %p(X) pode ser representado por uma medida de Radon usando a operagao de integral como
produto de dualidade.

Teorema 1.4.1 (Teorema de Riesz). Seja X um espago polonés. Todo funcional linear continuo
L:%,(X)— R é da forma

L(f) = /X f(@)dp(z)

para uma unica medida de Radon, com sinal, finita p em X.

4As hipéteses minimas para estudar tais objetos sdo de considerar X um espaco topologico HausdorfT.
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Dessa forma, podemos definir o conjunto das medidas de Radon finitas como o dual do espago
de Banach %,(X), i.e.

Mp(X) = (60(X))7,

o que também induz a norma de variagao total

111l vy = sup { ’/X f(a)dp(x)

assim como a convergéncia fraca estrela, ou fraca-x, obtida através dessa dualidade. Dizemos que
uma sequéncia (un)nen C Ap(X) converge na topologia fraca estrela para p € #,(X), denotado

FeG(X), 1fll < 1},

por fi, —— pu, se para todo f € €p(X),
n—oo

/deunm/xfdw

Ou seja, a topologia fraca estrela é a menor topologia para a qual a aplicagao u +— / fdu é
x

continua para toda f € %p(X).
Como o dual de um espago de Banach, temos diretamente acesso ao teorema de Banach-Alaoglu-
Bourbaki que da um principio de compacidade para a bola unitaria de .#;(X):

Teorema 1.4.2. A bola unitdrio fechada
B e (X)) il gy <1}
€ compacta com respeito & convergéncia fraca-x.

Estamos particularmente interessados no conjunto de medidas positivas e no conjunto de medi-
das de probabilidade

M) (e M(X) 0 1y, PX) S (e M) il gy =1}
Exercicio 1.8. Seja pu € ./, (X), prove que ||l 42y = #(X).

Exercicio 1.9. Mostre que a aplicagao p — ||pl|.z(x) € semi-continua inferiormente para a topo-

. . , * ~
logia fraca estrela, isto é, se u,, —— u entao
n—oo

ol ey < 1inlgiolcl>f ttn |l )

[Dica: Use o exercicio 1.1].

O exercicio 1.9 mostra um fend6meno muito importante com respeito a convergéncia fraca estrela:
uma sequéncia de medidas convergindo nessa topologia pode perder massa no infinito. O que
significa que o espago de medidas de probabilidade & (X’) nao é um subconjunto fechado de ., (X))
nessa topologia. Isso reduz muito a aplicabilidade direta do teorema 1.4.2 pois qualquer sub-
sequéncia convergente de & (X') obtida com esse principio de compacidade pode perder massa no
infinito de forma que seu limite ndo seja mais uma medida de probabilidade! No entanto, & esse
estagio do texto, ressaltamos que o leitor ja tem todas as ferramentas necessarias para demonstrar a
existéncia de um plano de transporte 6timo em um caso particular (mais ainda assim muito usado)
do problema de Kantorovitch:
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Exercicio 1.10. Suponha que X e ) sdo espagos métricos compactos, por exemplo X = Y = Q um
fechado e limitado de R?, e ¢ é um custo continuo. Prove que o problema de Kantorovitch admite
um plano de transporte 6timo.

Para contornar isso, introduzimos a noc¢ao de convergéncia fraca de medidas de probabilidade,
também chamada de convergéncia estreita pois nao é de fato uma convergéncia fraca da analise
funcional, mas isso nao importa muito.

Definicao 1.4.2 (Convergéncia fraca de medidas). Uma sequéncia (j,),.y C Z(X) converge
fracamente para u € Z(X), denotado por u, —— pu, se para toda funcdo continua e limitada
n—oo

[ € 6 (X),
/X [ p— /X fdu.

Para essa nogao de convergéncia temos o direito de usar a fungao constante igual & 1 como
fungdo teste, logo se (i), ey C Z(X) converge para u na topologia estreita, entao

1=un(X)=/ Ldpy —— [ ldp = p(X),
X X

n—oo

e portanto p € P (X). Essa sera a topologia que em geral vamos tabalhar com o espago de medidas
de probabilidade. Note que pelo exercicio 1.7, quando X é um espago compacto as topologias
estreita e fraca estrela coincidem e temos compacidade diretamente do teorema de Banach-Alaoglu,
valido para a tologia fraca estrela em espacos de Banach em geral. A conveniéncia disso é que & (X)
serd automaticamente compacto quando X é compacto, se nao for o caso teremos de desenvolver
ferramentas para trabalhar melhor com o topologia estreita.

1.5 Semi-continuidade inferior e compacidade em Z(X)
Passamos agora ao estudo de critérios de semi-continuidade e compacidade com respeito & topologia
estreita. Note que como ja discutimos que %p(X) C 6;(X), obter tais resultados para a topolo-

gia estreita nos dard automaticamente os mesmos resultados para a topologia fraca estrela. Por
defini¢ao, temos que se f € 6,(X), entdo automaticamente temos que o funcional

2X)3 0 [ F@int)

é continuo para a topologia estreita.
Podemos generalizar esse resultado para o caso em que f é s.c.i. através do resultado seguinte

Lema 1.5.1. Seja f : X — RU {400} uma fungao s.c.i. e limitada inferiormente, entao existe
uma sequéncia de fungoes (fr),cy satisfazendo as seguintes propriedades

e fr € Lipschitz continua com constante k;

e [ forma uma sequéncia mondtona, fr(x) < fri1(x) - f(z) para todo x € X.
— 00
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Demonstracao. Defina a fungao
fe(@) = inf f(y) + kdx(z,y).
yeX

Como f ¢é limitada inferiormente, existe ¢ > 0 tal que f > —c, e esse infimo definindo fi é sempre
maior que —oo. Vamos provar que fj é Lipschitz continua com constante k. Dados dois pontos
z, 2 € X quaisquer, usando a desigualdade triangular temos para todo y € X que

fe(@) < f(y) + kdx(y,x)
< f(y) + kdx(y,2") + kdx (2, )

Tomando o infimo em y € X', segue que
Fr(@) = fiu(@) < kdx (2, 2).

Trocando o papel de x e 2/, obtemos a desigualdade reversa, o que implica que f; é Lipschitz
continua com constante k. - -
Além disso, temos que f < fr11, pois para todo x € X

Jr(x) = inf, fy) + kdx(z,y) < inf ) + (k+ Ddx(z,y) = frra(z).

Desse modo, a sequéncia (fk (x)) ¢ monotoniamente crescente para todo x € X e portanto converge,
de formas que podemos definir a quantidade

L = sup fi(w) = lim fio(x).

Como fi(x) < f(x), assuma por contradi¢do que L < f(x), segue que L < +oo. Pela definicio
de infimo, tome uma sequéncia (zx),cy C & tal que

Flaw) + kdx (2, 21) < fulo) + %

Logo como f > —c, temos que

< L+c+1/k

dx(:z:,:z:k) ~ k‘ oo 0.

Mas entao, pela semi-continuidade inferior de f, obtemos que
fla) < likminff(xk) + kdx (2, z) < Jim fr(@) +1/k < f(2).
—00 —00

Disso, segue que fi(z) — f(z).
k—oco _
Para concluir a prova, podemos definir f = min{ fx, k}, o que preserva as propriedades ante-

riores e garante que f é limitada. O

Usando esse resultado, nés podemos demonstrar o resultado de semi-continuidade desejado.
Com um pouco mais de trabalho podemos provar o teorema de Portmanteau, que da varias carac-
terizagoes equivalentes da convergéncia estreita.
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Teorema 1.5.1 (Portmanteau). Seja (pin),cy C Z(X). A seguintes afirmagoes sio equivalentes:

Ll

2. para toda fungao s.c.i. limitada inferiormente f : X — R U {+o0} temos que

/ fdugliminf/ fdpy,.
X n— oo X

3. para toda fungao s.c.s. limitada superiormente g : X — RU {400} temos que

limsup/ gdung/ gdp.
n—00 X X

4. para todo conjunto aberto A C X wvale que

w(A) < liminf p, (A).

n— oo

5. para todo conjunto fechado F C X wvale que

lim inf p, (F) < p(F).

n—oo -

6. para todo conjunto mensurdvel E C X tal que n(OF) = 0 vale que

Nn(E) — Nn(E)

n—oo

Demonstragao. Os items (2) e (3), e (4) e (5) s@o equivalentes entre si por meio da fun¢do comple-
mentar.

A implicagdo (1) = (2) segue diretamente do Lema 1.5.1 e da defini¢io de convergéncia
estreita. Para ir de (2) = (1), basta notar que se f € %,(X), entdao f é s.ci. e s.c.s., logo
aplicando (2) e (3) obtemos a igualdade necessaria para a convergéncia estreita.

A implicagdo (2) = (4) é obtida aplicando o item (2) a funcdo f = x4, que é s.c.i. para
todo aberto A. Para a implicag@o inversa, podemos assumir que f € %,(X), novamente usando o
Lema 1.5.1.

Para isso, comece com f € %,(X), de modo que f(X) C [a,b]. Seja uma parti¢ao do intervalo
[a, b] dada por

a=ty<ti <--- <ty =0
Como p é uma medida de Radon finita, existe apenas um nimero finito de valores ¢ tais que
w(f~r({t})) > 0. Portanto, podemos escolher a partigdo de modo que u(f~1({t;})) = 0 para todo
t1=1,....,m—1et;41 —t; <1/N para todo i.
Defina os conjuntos
dif'

B, = {.73 eX:t; < f(J?) < t,‘+1} = fﬁl(ti,ti_H], 1=1,...,m—1,

assim como By = {2 € X 1ty < f(x) <ty )
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Os B; sendo todos disjuntos e UB; = X', por construgao, podemos entao definir
fr(a) = 2; ailp,(x), com a; = inf f.
i

Como f é limitada os infimos definindo a; sao sempre finitos, mesmo que nao sejam atingidos, de
modo que

fn(@) < f(o),
e fn(z) ~ = f(x) para todo = € X, pois f é uma funcio continua.
—00

def.

Defina também A; = {x € X : t; < f(x) < t;341}, todos conjuntos abertos. Portanto, aplicando
(4) a cada conjunto A;, temos que

w(Bi) = p(A; U{f = tit1}) = p(A;) < liminf i, (A;) < liminf p,, (B;).
n—oo

n— oo

Além disso, pelo lema de Fatou temos que

m—1 m—1
/ fndp = Z a;p(B;) < Z a; liminf p, (B;)
x i=0 i=0 nee

m—1

< liminf Z aifin (Bi) = liminf/ fnvdp, < liminf/ fdpig,.

Finalmente, fazendo N — oo e usando o Teorema da Convergéncia Monétona, concluimos que

/ fdugliminf/ fdpn,
X n—oo X

o que mostra (1) para f € 6,(X).
Para tratar o caso f s.c.i., basta aplicar o Lema 1.5.1 e o caso f € €,(X), como feito anterior-
mente. O

O segundo ingrediente que precisamos para estudar a existéncia de problemas variacionais em
P(X) & a compacidade. Como discutimos anteriormente, o que impede que o teorema de Banach-
Alaoglu-Bourbaki seja um critério de compacidade é o fendémeno de perda de massa no infinito
quando passamos ao limite. A ideia central do teorema de Prokhorov é combinar um critério que
evite esse fendmeno de perda de massa no infinito, com a compacidade obtida diretamente da
topologia fraca-*.

Vamos introduzir uma pequena notagao, porém muito tutil, a de restricao de medidas. Dada
uma medida de Radon p e um conjunto boreliano A, definimos a medida de restrigdo de p em A
como

L A(B) = (AN B), para todo boreliano B.

Teorema 1.5.2 (Prokhorov). Se X' € um espago polonés, entdo um subconjunto K C P (X) €
relativamente (sequencialmente) compacto para a topologia estreita se, e somente se, é estreito, isto
é: para todo € > 0, existe um compacto K. C X tal que

wKe) >1—e, Vuek.
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Prova Teorema 1.5.2: K estreito = K pré-compacto. Seja K um conjunto (sequencialmente) com-
pacto na topologia estreita. Como X é separével, existe um subconjunto denso e enumeravel (z;)
Vamos provar que para todo j € N, existe k; tal que

i€N”

kj
wl X\ UB(xi,l/j) < 27J¢ para toda pu € K. (1.1)
i=1
Uma vez que isso esteja provado o resultado segue, pois definindo

k

<

K< B(xi,1/7),

1

1 D¢

7 i

note que K é compacto, pois é completo e totalmente limitado. Além disso

) k; 00
M(X\K)gz,u X\UB(xi,l/j) <Z2_j€:5, para todo p € K.
j=1 j=1

— =1

Vamos entao provar (1.1) por contradi¢do. Suponha que exista jo e uma sequéncia (i), .y C K
tal que

Hrn (X\ U B(z;, 1/j0)> > 27 Jog,

Em particular, fixado um k € N, se n > k, entao

k n
fin <X\ U B(a, 1/j0)> > fin (X\ U B(a, 1/j0)> > 9Jog.

i=1 i=1

Por compacidade, existe uma subsequéncia de (f,),,cy que converge na topologia estreita para f.
Segue entao do teorema de Portmanteau 1.5.1 que

k k
M (X\ U B(xi71/jo)> > lim sup iy, (2{\ U B(z;, 1/]‘0)> > 9dog,
i=1 n—oo i=1

uma vez que para todo k € N o conjunto X'\ Ule B(z;,1/jo) € fechado. Como esta sequéncia é de
conjuntos encaixados, obtemos da densidade de (x;);.y que

k
() A\ B(wi,1/40) = 0.

kEN i=1
Finalmente, obtemos uma contradicao fazendo k — oo ja que
ki
" (X\ U B, 1/jo)> ——0
i_1 k;—o00

para toda medida de probabilidade. O
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Prova Teorema 1.5.2: K pré-compacto => K estreito. Primeiro mostramos que se o conjunto K é
estreito, entdo ele é compacto. Nesse caso, existe uma sequéncia de compactos K de X tal que

— 0. (1.2)

k—o0

T =

wi, = sup (X \ K) <
pneK

Em particular, podemos escolher (K} ), .y como uma sequéncia monotona, ou seja K C K41 para
todo k. De fato, dada uma tal sequéncia, podemos definir uma segunda por indugao como

Ki :K1 eK]/€+1 :K]/CUK]CJFl.

Como a uniao finita de compactos é compacta, a nova sequéncia é formada por conjuntos compactos
encaixados ainda satisfazendo a condigao (1.2).

Considere agora uma sequéncia (g, ) vamos construir um ponto de acumulagao para essa
sequéncia. Dado k € N, defina

neN?

def.

Pk = pon L K.

Logo fixado k € N, temos que (pin k), oy esté contido na bola unitaria de .# (K}). Pelo teorema de
Banach-Alaoglu-Bourbaki, existe uma subsequéncia ¢ : N — N tal que

Hor(n),k —>* ;¥ para todo k € N,

n—oo

onde, como cada K}, é compacto ndo ha perda de massa no infinito, 1 — wy < p*F(X) < 1. A nova
sequéncia (uk)keN ¢ monotona, ou seja ¥ < pF*1 para todo k, no sentido de medidas. Em outras
palavras, para todo 0 < ¢ € 6, (X) seque que

/}(¢duk§/){¢duk+l-

Isso é uma consequéncia direta da inclusao Kj C Kj41 e da monotonia da integral, o que implica

que fin g < fn k+1 Para n fixo.
Dessa forma, para todo 0 < ¢ € Cp(X), temos que a sequéncia de ntmeros reais

/X pdy*

¢ monotona crescente e limitada superiormente por ||¢| . . Podemos entao definir um funcional
linear limitado sobre %;,(X), e em particular sobre %, (X'), dado por

Lo = lim | ¢dut.
k—o0 X
Pelo teorema de representacao de Riesz, existe uma medida de Radon 0 < pu tal que
Lf :/ fdu, para toda f € €p(X).
x

Por outro lado, pela definicdo de L, segue que u* converge para p também na topologia estreita e
portanto podemos usar a constante 1 como funcao teste, de formas que

1= lim 1—-w,< lim p®(X)=uX)<1.

k—+oco k—+oco
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Logo p é uma medida de probabilidade como queriamos.
Basta provar que fiq(,) ——— p. Para isso, tome ¢ € €} (X’) e considere
n— o000

‘/ edfio(n) */ wdu‘ S‘/ odfig(n) */ editg (n) & +‘/ edite (n),k */ edp
X X X X X X

def. def.

='(3) = (44)

/ pdp® — / wdu‘
X X

def.

< (id)

+

Por defini¢ao de K} o primeiro termo pode ser majorado como

(1) < 1@l Hom) (X \ i) < [lolloo we — 0.

O segundo termo vai para 0 quando n — oo, por definicao de ;¥ e pelo fato de que em conjuntos
compactos, a convergéncia fraca-x coincide com a convergéncia estreita. Finalmente, o terceiro
termo (%i7) converge para 0 por definigao de p. O

Observamos que no teorema 1.5.2, o conceito de compacidade utilizado é o de compacidade
sequencial. Isso nao implica em perda alguma de generalidade pois a convergéncia estreita é metri-
zével. Uma das possiveis métricas sendo inclusive a distdncia de Wasserstein, definida através da
teoria de transporte 6timo como veremos mais a frente.

Note também que quando o conjunto X é unitario, e portanto obviamente compacto pelo critério
de compacidade por sequéncias, i.e. K = {u}, a condigao de ser estreito é justamente a conclusio
do teorema de Ulam dado no exercicio 1.5.

Terminamos essa se¢ao com uma condigoes suficiente para que uma familia de medidas em
P(R?) seja estreito através de uma majoragio uniforme de seus momentos. O momento de ordem
p, ou p-momento de uma medida p € £ (R?) é definido como

M0 [ faldua). (1.3)
Note que, se X é uma variavel aleatoria com lei p, temos que M, (p) = E[|X|7].

Proposicao 1.5.1. Seja K € Z(RY) tal que C = sup M,(p) < +oo. Entio K € estreito.
neK

Demonstracao. Pelo teorema de Heine-Borel, a bola fechada de raio R e centrada em 0, Bg, é
compacta em R%. Além disso, para todo p € K temos que

RN\ Br) < [ laPdue) < My(u) < €.
RINBR

Logo, dado um ¢ > 0, basta tomar K. = Bp tal que C/RP < ¢. O
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1.6 Existéncia de planos de transporte 6timo

Usando os resultados anteriores o teorema de existéncia de um plano de transporte 6timo se torna
uma aplicacao direta do método direto do calculo das variagoes. Primeiramente demonstramos que
conjunto to planos de transporte & marginais fixas é estreito, e portanto compacto pelo teorema de
Prokhorov.

Lema 1.6.1. Dados pp € P(X) ev € P(Y), o conjunto dos planos de transporte II(u,v) com
marginais p e v é compacto na topologia estreita de (X x ).

Demonstragao. Pela compacidade dos conjuntos unitarios {u} e {v} em 2(X), #()), temos pela
reciproca do teorema de Prokhorov que para todo € > 0 existem compactos K C X e L C tais que

WX \K)<e/2ev(X\L)<e/2.
Dessa forma, considere o compacto K x L de X x ), de forma que
(X x V)\ (K x L) € (X x (P\ L) U((X\K) x )
e portanto para vy € II(u, v) temos que
(X X D)\ (K x L)) <5 (X x (V\ L) +7((X\K) x Y) = p(X\ K) + v(Y\ L) < <.

Como o compacto K x L confere a estimagao desejada para todos os planos de transporte 7, segue
que II(u, v) é compacto. O

Dessa forma, o resultado de existéncia sai diretamente aplicando-se o método direto do calculo
das variagoes, Teorema 1.3.1.

Teorema 1.6.1. Dados p € P(X), v e P(Y) ec: X x Y — Ry semi-continua inferiormente, o
problema de Kantorovitch admite um plano de transporte étimo.

Demonstra¢ao. O resultado é uma aplicagao direta do teorema 1.3.1 com o critério de semi-
continuidade de 1.5.1 e a compacidade de II(y,v) do Lemma 1.6.1. O



