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THE SHOOTING ALGORITHM FOR PARTIALLY

CONTROL-AFFINE PROBLEMS WITH APPLICATION TO AN

SIRS EPIDEMIOLOGICAL MODEL

M.S. ARONNA AND J.M. MACHADO

Abstract. In this article we propose a shooting algorithm for partially-affine
optimal control problems, this is, systems in which the controls appear both
linearly and nonlinearly in the dynamics. Since the shooting system generally
has more equations than unknowns, the algorithm relies on the Gauss-Newton
method. As a consequence, the convergence is locally quadratic provided that
the derivative of the shooting function is injective and Lipschitz continuous at
the optimal solution. We provide a proof of the convergence for the proposed
algorithm using recently developed second order sufficient conditions for weak
optimality of partially-affine problems. We illustrate the applicability of the
algorithm by solving an optimal treatment-vaccination epidemiological prob-
lem.

1. Introduction

In this article we propose and study the convergence of a shooting algorithm for
the numerical solution of optimal control problems governed by equations of the
form

(1.1) ẋ(t) = f0(x(t), u(t)) +

m∑

i=1

vi(t)fi(x(t), u(t)), a.e. on [0, T ].

Note that when m = 0 then a nonlinear control system arises and when the fi’s do
not depend on u, for all i = 0, . . . ,m, then the resulting system is control-affine (we
will call the latter totally control-affine to differentiate them from partially control-
affine systems). In this article, however, we are particularly interested in the case
where both m and the dimension l of u are positive and then the two types of
control appear.

This study is motivated by many models that emerge in practice in which the
associated system is partially control-affine. Among them we can cite the followings:
the Goddard’s problem proposed in [20] and analyzed in Bonnans et al. [31], other
models for rocket motion studied in Lawden [27], Bell and Jacobson [8], Goh [22,
24], Oberle [37], Azimov [5] and Hull [26], an optimal hydrothermal electricity
production problem investigated in Bortolossi et al. [11], a problem of atmospheric
flight considered by Oberle in [38], and an optimal production process in Cho et
al. [14] and Maurer et al. [33]. Regarding applications, in this article we analyse,
in particular, an epidemiological model inspired from Ledzewicz and Schättler [28],
with treatment and vaccination as control policies (see Section 8.2).

∗ The first author was supported by FAPERJ, CNPq and CAPES (Brazil) and by the Alexander
von Humboldt Foundation (Germany). The second author was supported by CAPES (Brazil) and
Fondation de Mathématiques Jacques Hadamard.
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For optimal control problems subject to the dynamics (1.1), with endpoint and
control constraints, we propose a shooting algorithm and show that its local con-
vergence is guaranteed if second order sufficient optimality conditions (established
in Aronna [2]) hold. These second order conditions are written in terms of the
second derivative of the associated Lagrangian function and are an extension of re-
sults proved in Dmitruk [15] for control-affine systems. It is worth mentioning that
these conditions rely on Goh transform [23]. More details, references and timeline
for second order conditions for partially control-affine and (totally) control-affine
problems can be found in e.g. Aronna [2] and Aronna et al. [3], respectively.

Shooting-like methods applied to the numerical solution of partially control-
affine problems can be found in Oberle [36, 38] and Oberle-Taubert [39], where a
generalization of the algorithm proposed by Maurer [32] for (totally) affine systems
is given. These works present practical implementations of shooting algorithms,
but they do not deal with the issue of convergence through optimality conditions.

The article is organized as follows. In Section 2 we give the statement of the
problem, the main definitions and assumptions, and state the first order optimality
conditions. The differential-algebraic system (DAE) derived from the first order
conditions is deduced and analized in Section 3, while the shooting algorithm used
to solve this DAE is described in Section 4. In Section 5 we recall second order
necessary conditions, and we state the main result of the article on convergence of
the shooting algorithm in Section 6. In Section 7 we extend our analysis to prob-
lems with control constraints by means of an auxiliary unconstrained transformed
problem. In Section 8 we work out examples and solve them numerically.

Notations. Throughout the text we shall omit the arguments of some functions
whenever the context is clear, e.g. the time dependence is frequently omitted. If h
is a function of time and some other variables, i.e. h = h(t, x), the time derivative

is frequently referred as ḣ. For partial derivatives with respect to other variables
we write Dxh, hx or hxi

if xi is a component of x. The same convention is adopted
for higher-order derivatives. Given two differentiable vector fields g, h : Rn → R

n,
the Lie bracket between them is defined by

(1.2) [g, h] := Dxh(x)g(x) −Dxg(x)h(x).

We use the same notation for functions depending on u and v as well; nevertheless,
the derivatives are always taken w.r.t. x.

By R
k we denote the k-dimensional Euclidean real space, i.e. the space of k-

dimensional column vectors with the usual euclidean norm; and by R
k,∗ its dual

space consisting of k-dimensional row vectors. B denotes the open unitary ball
of Rk. By Lp([0, T ];Rk) we mean the Lebesgue space of functions with domain
being the interval [0, T ] and taking values in R

k; while W q,s([0, T ];Rk) denotes the
Sobolev spaces.

2. Statement of the Problem and Assumptions

We start with the control-unconstrained setting, the control-constrained case
being left for Section 7. Considering the function spaces U := L∞([0, T ];Rl), V :=
L∞([0, T ];Rm) and X := W 1,∞([0, T ];Rn), we define the optimal control problem
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in the Mayer form

minimize φ(x(0), x(T ))(2.1)

subject to

ẋ(t) = f(x(t), u(t), v(t)), a.e. on [0, T ],(2.2)

ηj(x(0), x(T )) = 0, for j = 1, · · · , dη.(2.3)

We let (OC) denote problem (2.1)-(2.3), where φ : R2n → R, ηj : R
2n → R, for

j = 1, . . . , dη, and the dynamics f : Rn+l+m → R
n is of the form

(2.4) f(x, u, v) := f0(x, u) +

m∑

i=1

vifi(x, u).

We make the following assumption for the aforementioned functions.

Assumption 1. All data functions f0, f1, · · · , fm, η and φ have Lipschitz contin-
uous second order derivatives.

A feasible trajectory is a tuple w := (x, u, v) ∈ W := X × U × V that verifies
the state dynamics (2.2) and the initial-final constraints (2.3). In order to state
the Pontryagin Maximum Principle (PMP), we consider the costate space X∗ :=
W 1,∞([0, T ];Rn,∗). Given an element λ = (β, p) ∈ R

dη,∗ × X∗, we define the pre-
Hamiltonian

(2.5) H(x, u, v, p) := p ·

(

f0(x, u) +

m∑

i=1

vifi(x, u)

)

,

the endpoint Lagrangian

(2.6) ℓ(x0, xT , β) := φ(x0, xT ) +

dη∑

j=1

βjηj(x0, xT ),

and the Lagrangian function

(2.7) L(w, λ) := ℓ(x(0), x(T ), β)

+

∫ T

0

p(t) ·

(

f0(x(t), u(t)) +
m∑

i=1

vi(t)fi(x(t), u(t)) − ẋ(t)

)

dt.

Before stating the PMP, we specify the notion of optimality that will be used.

Definition 2.1 (Weak minimum). A feasible trajectory ŵ = (x̂, û, v̂) ∈ W is said
to be a weak minimum of problem (OC) if, for some ε > 0, it is optimal in the set
of feasible trajectories w = (x, u, v) that satisfy

‖x− x̂‖∞ + ‖u− û‖∞ + ‖v − v̂‖∞ < ε.

For the reminder of the article we shall fix a nominal feasible trajectory ŵ =
(x̂, û, v̂) for which optimality conditions will be given. Whenever the arguments
of a function are omitted, we mean that it is evaluated at such trajectory. For a
proof of the Pontrygin’s Principle we refer the reader to the original work from
Pontryagin [40] or the more recent monographs [29, 42].
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Theorem 2.1 (Pontryagin’s Maximum Principle). If ŵ = (x̂, û, v̂) is a weak mini-
mum of (OC), then there exists a multiplier λ = (β, p) ∈ R

dη ,∗ ×X∗, satisfying the
costate dynamics:

(2.8) ṗ = −DxH(ŵ, p), a.e. on [0, T ];

the transversality conditions:

p(0) = −Dx0ℓ(x̂(0), x̂(T ), β),

p(T ) = DxT
ℓ(x̂(0), x̂(T ), β),

(2.9)

and the stationarity of the Hamiltonian

(2.10) DuH(ŵ, p) = 0 and DvH(ŵ, p) = 0, a.e. on [0, T ].

An element λ that satisfies the PMP for a trajectory w ∈ W is called a multiplier
and the pair (w, λ) is called an extremal. For a solution w of (OC), we can, in
general, expect a set of multipliers, instead of a single one. This is problematic
for the shooting algorithm proposed later in this article, therefore we make the
following assumption which guarantees uniqueness of multiplier [40].

Assumption 2. The derivative of the mapping

η̂ : Rn × U × V → R
dη

(x(0), u, v) 7→ η(x(0), x(T ))
(2.11)

is onto. Here the vector x is the solution to (2.2) given the control (u, v) and initial
condition x(0).

Throughout the reminder of the article, Assumption 2 shall be assumed without
declaration and the trajectory ŵ is supposed to satisfy the first order necessary
conditions given by the PMP. Hence, in view of Assumption 2, ŵ possesses a unique

multiplier λ̂ := (β̂, p̂).

3. The Equivalent Differential-Algebraic System

The Pontryagin Maximum Principle implies that the optimal state x̂ together
with the multiplier p̂ are solutions of a DAE induced by equations (2.2), (2.3), (2.8),
(2.9), and (2.10). The next step consists in showing that there exists a represen-
tation of the controls as a function of x and p, in such way that one can eliminate
them and transform the DAE into a two-point boundary value problem (TPBVP).
This can be achieved by using the stationarity of the Hamiltonian along with a
suitable strengthened version of the Legendre-Clebsch conditions and application of
the Implicit Function Theorem (IFT).

3.1. Controls in feedback form. The conventional Legendre-Clebsch condition
assumes the form

(LC)





Huu(ŵ, p̂) Huv(ŵ, p̂)

Hvu(ŵ, p̂) Hvv(ŵ, p̂)



 � 0.

A proof of (LC) for the present setting can be found in Aronna [2, Corollary 1].
Note that, since Hvv(ŵ, p̂) ≡ 0 and Hvu = HT

uv, condition (LC) holds if, and only
if

(3.1) Huu(ŵ, p̂) � 0 and Huv(ŵ, p̂) = 0.
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Since the matrix in (LC) is singular we cannot apply the IFT to (2.10) and obtain
our desired representations of the controls. Instead, what one usually does is com-
puting the time derivatives of the switching function Hv that may depend explicitly
on the controls (see e.g. Bryson and Ho [12]). In order to simplify the calculations
involved in computing these derivatives, we consider a general formula for the time
derivative of a product p ·F, where F : Rn×R

m → R
n is a vector field. Employing

the notation of Lie brackets given in the notation paragraph, we get

(3.2)
d

dt

(
p̂ · F (x̂, û)

)
= p̂ · [f0, F ] +

m∑

i=1

v̂j p̂ · [fi, F ] + p̂ ·DuF ˙̂u.

We obtain Ḣvi by choosing F = fi. Recalling that Hvu = 0, we get

(3.3) Ḣvj (ŵ, p̂) = p̂ · [f0, fj] +
m∑

i=1

v̂j p̂ · [fi, fj ].

As a consequence of the following Proposition 3.1, equation (3.3) does not depend
explicitly of the linear control v.

Proposition 3.1 (Goh conditions). Assume that ŵ is a weak minimum. Then the
following identities hold

p̂ · [fi, fj ] = 0, for i, j = 1, . . . ,m.

Proposition 3.1 was proposed and proved by Goh [21]. A generalization that
applies to the framework of the current paper was given by Aronna in [2, Cor. 5.2]
as a corollary of second order necessary conditions for optimality when the set of
multipliers is a singleton (see also [3] and [18]). In view of Proposition 3.1, equation
(3.3) reduces to

(3.4) Ḣvi(ŵ, p̂) = p̂ · [f0, fi].

By derivating the latter equation once more w.r.t. time, we obtain

(3.5) Ḧvi = p̂ · [f0, [f0, fi]] +

m∑

j=1

v̂j p̂ · [fj , [f0, fi]] + p̂ ·Du[f0, fi] ˙̂u.

We aim at removing the dependence on ˙̂u from (3.5). This can be done by using the
stationarity condition Hu(ŵ, p̂) = 0. Assuming enough regularity, the total time
derivative of this expression gives

(3.6) Ḣu(ŵ, p̂) = Hux
˙̂x+Hup

˙̂p+Huu
˙̂u = 0,

where the term Huv v̇ vanishes in view of (3.1). To make (3.6) more rigorous, we
make the following assumption on the controls.

Assumption 3 (Regularity of the controls). The nonlinear control û is continu-
ously differentiable and the linear control v̂ is continuous.

This assumption is not restrictive since it follows from the IFT, once we assume
the strengthened generalized Legendre-Clesbch condition (SLC) below. In fact,
using equation (3.6) and assuming the strengthened Legendre-Clebsch condition

w.r.t. u, i.e. Huu ≻ 0, we can lose the dependence of ˙̂u, by using the IFT on (3.6),
which yields

(3.7) ˙̂u = Γ(û, v̂, x̂, p̂),
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for a C1-function Γ.
Equation (3.7) shows that the dependence on ˙̂u can be removed from (3.5). We

are now in position to formulate a system that can be used to achieve our desired
representation. Consider the mapping

(3.8) (w, λ) 7→





Hu(w, p)

−Ḧv(w, p)



 ,

whose Jacobian w.r.t. (u, v) at the extremal (ŵ, λ̂) is

(3.9) J :=







Huu(ŵ, p̂) Huv(ŵ, p̂)

−
∂Ḧv

∂u
(ŵ, p̂) −

∂Ḧv

∂v
(ŵ, p̂)







.

To apply (IFT) to Hu = 0,−Ḧv = 0 and retrieve the controls, we assume the
following strengthened generalized Legendre-Clebsch condition

(SLC) Huu(ŵ, p̂) ≻ 0, −
∂Ḧv

∂v
(ŵ, p̂) ≻ 0.

We get the following result.

Theorem 3.2. Assume that (SLC) holds. If ŵ is a weak minimum with associated

multiplier λ̂, then the optimal control (û, v̂) admits the feedback form

(3.10) û = U(x̂, p̂) v̂ = V (x̂, p̂),

where U and V are C1-functions. Furthermore, the extremal (ŵ, λ̂) satisfies the
optimality system

(OS)







ẋ = f(x, U(x, p), V (x, p)), a.e. on [0, T ],

ṗ = −p ·Dxf(x, U(x, p), V (x, p)), a.e. on [0, T ],

ηj(x(0), x(T )) = 0, for j = 1, · · · , dη,

(p(0), p(T )) = (−Dx0ℓ,DxT
ℓ) (x(0), x(T ), β),

Hv(x(T ), U(x(T ), p(T ))) = 0, Ḣv(x(0), U(x(0), p(0))) = 0.

Proof. From our previous discussion, since Huu ≻ 0, we can remove the dependence
of ˙̂u from Ḧv. Note that since Huv ≡ 0,

(3.11) J =





Huu 0

−
∂Ḧv

∂u
−
∂Ḧv

∂v



 =





Huu 0

0 −
∂Ḧv

∂v









I 0

∂Ḧv

∂v

−1
∂Ḧv

∂u
I



 .

Since the second matrix in (3.11) is invertible from (SLC) and the third one is
invertible by inspection, J is also invertible. Representation (3.10) follows from
the IFT.

Moving on to (OS), note that it is derived from the PMP. However, the feedback

forms in (3.10) are equivalent to Hu = 0, Ḧv = 0. To obtain the stationarity of the

Hamiltonian w.r.t. v, we include the boundary conditions Hv(T ) = Ḣv(0) = 0. We
could have chosen other pair of boundary conditions, but this choice will simplify
the presentation of the results that follow. �
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3.2. Computing the Linear Controls. To solve (OS), we need explicit analytical
expressions for the controls in terms of x and p. The nonlinear controls usually
can be obtained from the stationarity Hu = 0. We start by assuming that the
representation û = U(x̂, p̂) was already obtained.

In the sequel we introduce the Poisson bracket notation. Given two functions
g, h that depend on x, p, the Poisson bracket is given by

(3.12) {g, h} := DxgDph−DpgDxh =

n∑

i=1

(
∂g

∂xi

∂h

∂pi
−

∂g

∂pi

∂h

∂xi

)

.

The following result is a direct consequence of this definition.

Proposition 3.3. Let F = F (x, p, t) be a C1-function. Then

(3.13)
d

dt
F (x, p, t) = {F,H}+

∂F

∂t
,

provided that (x, p) follows the Hamiltonian dynamics ẋ = Hp, −ṗ = Hx.

As a consequence of Proposition 3.3, if the optimal control (û, v̂) admits a feed-
back representation û = U(x, p), then

(3.14) ˙̂u = {U,H} = {U, p · f0}+

m∑

j=1

v̂j{U, p · fj}.

By substituting (3.14) in equation (3.5), we obtain, for i, j = 1, . . . ,m,

Ḧvi = γi0 +

m∑

j=1

v̂jγij = 0, where γij := p̂ · ([fj , [f0, fi]] +Du[f0, fi]{U, p̂ · fj}) .

(3.15)

4. The Shooting Algorithm

A well-known method for solving TPBVPs is the shooting algorithm. Given an
initial guess for the states and costates, the method iteratively adjusts these initial
values in order to verify the boundary conditions.

Our goal is to numerically solve (OS) by applying a shooting algorithm. Note
that the unknown multiplier β is involved in the formulation of (OS), it is then
included as a shooting variable as shown below.

4.1. The shooting function. We define the shooting function as follows.

Definition 4.1 (Shooting function). Let S : Rn × R
n,∗ × R

dη =: D(S) → R
dη ×

R
2n+2m be the shooting function given by

(4.1) (x0, p0, β) =: ν 7→ S(ν) =









η(x0, x(T ))
p0 +Dx0ℓ(x0, x(T ), β)

p(T )−DxT
ℓ(x0, x(T ), β)

Hv (x(T ), U(x(T ), p(T )))

Ḣv (x0, U(x0, p0))









,

where (x, p) is the solution of the initial value problem

ẋ = Hp(x, U(x, p), V (x, p), p), x(0) = x0,

ṗ = −Hx(x, U(x, p), V (x, p), p), p(0) = p0.
(4.2)
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Solving the differential-algebraic system (OS) is equivalent to finding the roots of
the shooting function S. Since the number of unknowns in S(ν̂) = 0 may be smaller
than the number of equations, the Gauss-Newton method is a suitable approach.
At each step the method updates the current approximation νk by

(4.3) νk+1 ← νk +∆k,

where the increment ∆k is computed by solving the linear approximation of the
least squares problem

(4.4) min
∆∈D(S)

|S(νk) + S
′(νk)∆|

2
.

The solution of the linear regression (4.4) is known to be

(4.5) ∆k = −
(
S ′(νk)

TS ′(νk)
)−1
S ′(νk)

TS(νk),

provided the matrix S ′(νk)
TS ′(νk) is non-singular. One can prove that the Gauss-

Newton method (4.3)-(4.5) converges at least linearly as long as the derivative S ′(ν̂)
exists and is injective. If in addition it is also Lipschitz continuous, the method
converges locally quadratically (see e.g. Fletcher [17], or alternatively Bonnans
[9]).

4.2. Computation of the derivative of the shooting function. In this para-
graph we aim at obtaining a linearized differential system to be used afterwards to
compute the derivative of the shooting function.

A general differential-algebraic control system can be written as

(4.6)







ξ̇ = F(ξ, α),

0 = G(ξ, α),

0 = I(ξ(0), ξ(T )),

where F : Rn × R
m → R

n, G : Rn × R
m → R

dG and I : Rn × R
n → R

dI are C1-
functions. The functions ξ and α represent the tuple of states and costates and the
control, respectively. Consider w̃ = (ξ̃, α̃) a solution of (4.6), then the linearization
of (4.6) at w̃ is given by

(4.7)







˙̄ξ = DξF(w̃)ξ̄ +DαF(w̃)ᾱ,

0 = DξG(w̃)ξ̄ +DαG(w̃)ᾱ,

0 = Dξ0I
(

ξ̃(0), ξ̃(T )
)

ξ̄(0) +DξT I
(

ξ̃(0), ξ̃(T )
)

ξ̄(T ).

Let us apply this procedure to get the linearization of (OS). We set ξ := (x, p),
α := (u, v) and w := (ξ, α). The linearized state and costate dynamics (2.2), (2.8)
can be written as

˙̄x = Dxf(w)x̄ +Duf(w)ū +Dvf(w)v̄,(4.8)

˙̄p = −
(
p̄Hxp + x̄THxx + ūTHux + v̄THvx

)
.(4.9)
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The endpoint conditions are also easily linearized, giving

0 = Dη(x̂(0), x̂(T ))(x̄(0), x̄(T )),(4.10)

p̄(0) = −



x̄T (0)D2
x0
ℓ(ŵ, β̂) + x̄T (T )D2

x0xT
ℓ(ŵ, β̂) +

dη
∑

j=1

β̂jDx0ηj



 ,(4.11)

p̄(T ) =



x̄T (T )D2
xT

ℓ(ŵ, β̂) + x̄T (T )D2
x0xT

ℓ(ŵ, β̂) +

dη
∑

j=1

β̂jDxT ηj



 .(4.12)

The linearization of the other components of (4.1) gives

Lin Hu = p̄Duf + x̄THT
ux + ūTHuu(4.13)

Lin Ḧv = p̄Dvf + x̄THT
vx(4.14)

Lin Hv|t=T = p̄Dvf |t=T + x̄THT
vx

∣
∣
t=T

(4.15)

Lin Ḣv

∣
∣
∣
t=0

=
d

dt

∣
∣
∣
∣
t=0

(
p̄Dvf + x̄THT

vx

)
.(4.16)

The linearized system (4.8)-(4.12), (4.13)-(4.16) is referred as (LS). Finally, the
evaluation of S ′ in the direction ν̄ := (x̄0, p̄0, β̄) gives:

(4.17) S ′(ν̂)ν̄ =











Dη(x̂(0), x̂(T ))(x̄0, x̄(T ))

p̄0 +
[

x̄T
0 D

2
x0
ℓ+ x̄T (T )D2

x0xT
ℓ+

∑dη

j=1 β̄jDx0ηj

]

p̄(T )−
[

x̄T (T )D2
xT

ℓ+ x̄T (T )D2
x0xT

ℓ+
∑dη

j=1 β̄jDxT
ηj

]

p̄Dvf + x̄THT
vx

∣
∣
t=T

d
dt

(
p̄Dvf + x̄THT

vx

)∣
∣
t=0











.

5. Second Order Optimality Conditions

In this section, we briefly review second order optimality conditions given in
Aronna [2] which we will apply later to prove convergence of the shooting algorithm.

The optimality conditions will be presented in terms of the quadratic form

(5.1) Ω(w̄) := D2
(x0,xT )2ℓ(x̄(0), x̄(T ))

2

+

∫ T

0

(
x̄THxxx̄+ ūTHuuū+ 2x̄THuxū+ 2x̄THvxv̄ + 2v̄THuvū

)
dt,

or some transformed version of it. A well-known result around such quadratic form,
obtained by means of a second order Taylor expansion, is that

(5.2) D2L(w̄)2 = Ω(w̄).

We define the critical cone as

(5.3) C := {w̄ ∈ W : (4.8) and (4.10) hold} .

Since we are interested in stating second order sufficient conditions, we will require
perturbations of the controls and states in L2. Hence, we extend Ω to the function
space W2 := X2 × U2 × V2, where X2 := W 1,2([0, T ];Rn), U2 := L2([0, T ];Rl) and
V2 := L2([0, T ];Rm). The closure of C in W2 becomes

(5.4) C2 := {w̄ ∈ W2 : (4.8) and (4.10) hold} ,

and one has C = C2 ∩W . Hence C ⊂ C2 and the inclusion is dense, as discussed in
[15].



10 M.S. ARONNA AND J.M. MACHADO

5.1. Second Order Necessary Conditions of Optimality. The following result
holds.

Theorem 5.1 (Second order necessary condition [2, 35]). Suppose that ŵ is a weak
minimum of problem (OC). Then

(5.5) Ω(w̄) ≥ 0, for all w̄ ∈ C2.

To state second order sufficient conditions one can not rely on coercivity of Ω
w.r.t. the controls since Hvv ≡ 0. In order to overcome this problem, the Goh
transform is employed. The latter is a change of variables introduced by Goh in
[23] and applied by him and other authors to derive second order conditions [21, 15].
For the linearized system (4.8), Goh transform is defined as

(5.6) ȳ(t) :=

∫ t

0

v̄(τ)dτ, ξ̄(t) := x̄(t)− fv(t)ȳ(t), for t ∈ [0, T ].

One can easily check that the dynamics of the new variable ξ̄ is given by

˙̄ξ = fxξ̄ + fuū+Bȳ, ξ̄(0) = x̄(0),(5.7)

where B := fxfv −
d

dt
fv,(5.8)

and B is well-defined since u is differentiable as stated in Assumption 3.
We are interested in how the functional Ω and the critical cone are expressed in

terms of the transformed variables (ξ̄, ū, ȳ). For this, consider a critical direction
w̄ ∈ C. Note that x̄(T ) = ξ̄(T ) + fv(T )ȳ(T ) and x̄(0) = ξ̄(0). Hence we introduce
the new variable h̄ := ȳ(T ), which appears in the transformation of the quadratic
functional through integration by parts and becomes a value that is independent of
ȳ when passing to the limit in the L2-topology. Equation (4.10) can be rewritten
as

(5.9) Dηj(x̂(0), x̂(T ))
(
ξ̄(0), ξ̄(T ) + fv(T )h̄

)
= 0, for j = 1, · · · , dη,

so that the critical cones C2 and C are respectively mapped into the sets

P2 :=
{

(ξ̄, ū, ȳ, h̄) ∈ W2 × R
m : ȳ(0) = 0, ȳ(T ) = h̄, (5.7) and (5.9) hold

}

,(5.10)

P := (P2 ∩W) × R
m.(5.11)

The quadratic functional Ω can also be written in terms of the new variables
(ξ̄, ū, ȳ, h̄), and takes the form

(5.12) ΩP(ξ̄, ū, v̄, ȳ, h̄) := g(ξ̄(0), ξ̄(T ), h̄) +

∫ T

0

(
ξ̄THxxξ̄ + 2ūTHuxξ̄

+2ȳTMξ̄ + ūTHuuū+ 2ȳTEū+ ȳTRȳ + 2v̄TGȳ
)
dt,

where

M := fT
v Hxx − Ḣvx −Hvxfx, E := fT

v HT
ux −Hvxfu,(5.13)

S := 1
2

(
Hvxfv + (Hvxfv)

T
)
, G := 1

2

(
Hvxfv − (Hvxfv)

T
)
,(5.14)

R := fT
v Hxxfv − (HvxB + (HvxB)T )− Ṡ,(5.15)

g(ξ̄0, ξ̄T , h̄) := D2ℓ(ξ̄0, ξ̄T + fv(T )h̄)
2 + h̄T (2Hvx(T )ξ̄T + S(T )h̄).(5.16)
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For every critical variation (x̄, ū, v̄) and its respective transformed version (ξ̄, ū, ȳ, ȳ(T )),
one can relate the quadratic functionals Ω and ΩP through integration by parts, as
in [15, 2], obtaining

(5.17) Ω(x̄, ū, v̄) = ΩP(ξ̄, ū, v̄, ȳ, ȳ(T )).

In view of latter identity, one can obtain optimality conditions in terms of ΩP and
its extension to to W2 × R

m introduced below.
An important issue is the presence of the term 2v̄TGȳ, which depends on the

untransformed variation v̄. The expression of G (see (5.12) and (5.14)) gives

(5.18) Gij = −p · [fi, fj].

Hence, using Goh’s conditions from Proposition 3.1, the matrix G vanishes and our
quadratic form does not depend on v̄. The new quadratic form ΩP2 , obtained from
continuously extending ΩP to W2 × R

m, assumes the form

(5.19) ΩP2(ξ̄, ū, ȳ, h̄) := g(ξ̄(0), ξ̄(T ), h̄)

+

∫ T

0

(

ξ̄THxxξ̄ + 2ūTHuxξ̄ + 2ȳTMξ̄ + ūTHuuū+ 2ȳTEū+ ȳTRȳ
)

dt.

We are able now to state a version of necessary conditions which can be strength-
ened to sufficient conditions, once we assume coerciveness of ΩP2 .

Theorem 5.2 ([2]). If ŵ is a weak minimum of problem (OC), then

(5.20) ΩP2(ξ̄, ū, ȳ, h̄) ≥ 0, on P2.

5.2. Second Order Sufficient Conditions of Optimality. We introduce the fol-
lowing γ-order, which shall be used to state the sufficient conditions. For (x̄(0), ū, ȳ, h̄) ∈
R

n × U2 × V2 × R
m, we define

(5.21) γP(x̄(0), ū, ȳ, h̄) := |x̄(0)|
2 +

∣
∣h̄
∣
∣
2
+

∫ T

0

(|ū(t)|2 + |ȳ(t)|2)dt.

We can also express it as a function of the original variations by setting

γ(x̄(0), ū, v̄) := γP(x̄(0), ū, ȳ, h̄),

where ȳ is obtained from v̄ through Goh’s transform (5.6) and h̄ := ȳ(T ).

Definition 5.1 (γ-growth). We say that a trajectory ŵ = (x̂, û, v̂) satisfies the
γ-growth condition in the weak sense if there exist ε, ρ > 0 such that

(5.22) φ(x(0), x(T )) ≥ φ(x̂(0), x̂(T )) + ργ(x(0)− x̂(0), u− û, v − v̂),

for every feasible trajectory w that verifies ‖w − ŵ‖∞ < ε.

The following theorem was proved in [2] for a more general case allowing in-
equality endpoint constraints and possibly non-unique multiplier, and previously
proposed by Dmitruk in [15] in the totally control-affine setting.

Theorem 5.3 (Sufficient condition for weak optimality [2]). Let ŵ be a feasible

trajectory satisfying the PMP with unique associated multiplier λ̂. If for some ρ > 0
the quadratic functional ΩP2 satisfies

(5.23) ΩP2(ξ̄, ū, ȳ, h̄) ≥ ργP(x̄(0), ū, ȳ, h̄), on P2,

then ŵ is a weak minimum satisfying the γ-growth in the weak sense.
Conversely, if ŵ is a weak minimum satisfying γ-growth, then (5.23) is satisfied

for some ρ > 0.



12 M.S. ARONNA AND J.M. MACHADO

Corollary 5.4 ([2]). Let ŵ be a feasible trajectory satisfying the PMP with unique

associated multiplier λ̂ and satisfying the coercivity condition (5.23), then

(5.24)

(
Huu ET

E R

)

� ρI, a.e. on [0, T ].

Goh stated in [21] that (5.24) can be used to recover the strengthened Legendre-
Clebsch condition (SLC). This result (see Proposition 5.6 below) is of great use since
condition (SLC) is necessary to obtain the controls in feedback form and assemble
the optimality system (OS), as done in Theorem 3.2. To prove this implication we
use the following Lemma 5.5 that can be found in [22, 21] and that was used in the
literature by numerous authors. Nevertheless, since we believe that in Goh’s work
[21] there were some miscalculations, we included a revisited proof of Lemma 5.5
in Appendix B.

Lemma 5.5. The following identities hold:

(5.25) E = −
∂Ḣv

∂u
and R− EH−1

uu E
T = −

∂Ḧv

∂v
.

Proposition 5.6. Let ŵ be a feasible trajectory satisfying the coercivity condition
(5.24). Then, the strengthened Legendre-Clebsch conditions, in the form of (SLC),
hold.

Proof. The argument is inspired by the discussion from Goh in [24]. If the matrix
in (5.24) is positive definite then, for any Q ∈ R

(l+m)×(l+m), we have

(5.26) aTQT

(
Huu ET

E R

)

Qa > 0,

provided that the vector a is not in the kernel of Q. Therefore, in order for the
product matrix to be positive definite, it suffices to choose Q with full rank.

Setting Q :=

(

I −(Huu)
−1ET

0 I

)T

, we check that

QT

(

Huu ET

E R

)

Q =

(

Huu 0

0 R − E(Huu)
−1ET

)

=





Huu 0

0 −
∂Ḧv

∂v



 ,

where the last equality comes from Lemma 5.5. Since the matrix Q is non singular,
(SLC) follows. �

6. Convergence of the Shooting Algorithm

Now we turn to the proof of convergence for the proposed shooting scheme. For
this we formulate an auxiliary linear quadratic system as follows.

6.1. The auxiliary linear quadratic problem. Let (LQ) denote the optimal
control problem defined by (6.1)-(6.4) below

minimize ΩP2(ξ̄, ū, ȳ, h̄)(6.1)

subject to

˙̄ξ = fxξ̄ + fuū+Bȳ,(6.2)

˙̄h = 0,(6.3)

0 = Dηj(x̂(0), x̂(T ))
(
ξ̄(0), ξ̄(T ) + fv(T )h̄

)
,(6.4)
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where ū and ȳ denote the control variables, ξ̄ and h̄ are the states. Note that the
feasible trajectories of (LQ) are the critical directions in P2. Once the coercivity
condition (5.23) is assumed, the unique optimal solution of (LQ) is (ξ̄, ū, ȳ, h) = 0.

In order to prove that the derivative of the shooting function S is injective at
a weak minimum, we exploit the correspondence between solutions of (LQ) and
solutions of the linearized system (LS) (see Lemma 6.1 below).

Let χ̄ and χ̄h denote the costates associated with ξ̄ and h̄, respectively. The
qualification condition for the original problem given in Assumption 2 easily trans-
lates into an analogous constraint qualification for problem (LQ). Consequently,
the weak minimizer (ξ̄, ū, ȳ, h̄) = 0 of (LQ) also has a unique multiplier, which we
shall refer as λLQ :=

(
χ̄, χ̄h, β

LQ
)
.

Define the pre-Hamiltonian for problem (LQ) and the endpoint Lagrangian as

H(ξ̄, ū, ȳ, χ̄) := χ̄(fxξ̄ + fuū+Bȳ)

+ 1

2
ξ̄THxxξ̄ + ūTHuxξ̄ + ȳTMξ̄ + 1

2
ūTHuuū+ ȳTEū+ 1

2
ȳTRȳ,

ℓLQ
(

ξ̄0, ξ̄T , h̄, β
LQ
)

:= 1

2
g(ξ̄0, ξ̄T , h̄) +

dη
∑

j=1

βLQ
j Dηj

(

ξ̄0, ξ̄T + fv(T )h̄
)

,

respectively, where g was defined in (5.16). The costate dynamics becomes

(6.5) − ˙̄χ =
∂H

∂ξ̄
= χ̄fx + ξ̄THxx + ūTHux + ȳTM,

with transversality conditions

χ̄(0) = −ξ̄T (0)D2

x2
0
ℓ+ (ξ̄(T ) + fv(T )h̄)

TD2
x0xT

ℓ+

dη
∑

j=1

Dx0ηj ,(6.6)

χ̄(T ) = ξ̄T (T )D2

x2
T
ℓ+ ξ̄T (0)D2

x0xT
ℓ+ h̄THvx(T ) +

dη
∑

j=1

DxT ηj .(6.7)

The costate variable χ̄h vanishes identically since ˙̄χh = 0 and χ̄h(0) = 0. Finally,
the stationarity of the Hamiltonian gives

0 = Hū = χ̄fu + ξ̄THT
xu + ūTHuu + ȳTE,(6.8)

0 = Hȳ = χ̄B + ξ̄TMT + ūTET + ȳTR.(6.9)

The set of equations (6.2)-(6.4), (6.5)-(6.7) and (6.8)-(6.9) will be referred as the
Linear Quadratic System (LQS). Notice that for this system, the matrix of the
Legendre-Clebsch condition takes the form

(6.10) D2
(ū,ȳ)2H =

(
Huu ET

E R

)

.

Hence, if we assume coercivity for the original problem, Corollary 5.4 implies that
D2

(ū,ȳ)2H is uniformly positive definite and then, solving the linear quadratic opti-

mal control problem (LQ) is equivalent to solving its optimality condition (LQS).

6.2. Linking the auxiliary problem with the optimality system. Define the
mapping

(6.11) (x̄, ū, v̄, p̄, β) 7→
(
ξ̄, ū, ȳ, h̄, χ̄, χ̄h, β

LQ
)
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through the equations

ȳ(t) :=

∫ t

0

v̄(s)ds, ξ̄ := x̄− fvȳ, χ̄ := p̄+ ȳTHvx,

χ̄h := 0, h̄ := ȳ(T ), βLQ := β.

(6.12)

This Goh-type transformation is clearly one-to-one. Recalling the linearization (LS)
of the optimality system (OS), we show that this transformation maps solutions
of (LS) into solutions of (LQS). Afterwards we shall use this property and the
coercivity condition (5.23) to deduce the uniqueness of solution of (LS).

Lemma 6.1. If ŵ is a weak minimum of (OC), the injective mapping (x̄, ū, v̄, p̄, β) 7→
(ξ̄, ū, ȳ, h̄, χ̄, χ̄h, β

LQ) defined in (6.12) converts solutions of (LS) into solutions of
(LQS).

The proof of this lemma is left for the Appendix B.

6.3. Convergence of the shooting algorithm. We are in position to prove the
convergence of the shooting algorithm given in (4.3)-(4.5). We will use the following
result on the behavior of the Gauss-Newton algorithm.

Proposition 6.2 ([9, 17]). If the matrix S ′(ν̂) is injective, then the Gauss-Newton
algorithm (4.3)-(4.5) is locally convergent. If in addition S ′ is Lipschitz continuous,
then the algorithm converges locally quadratically.

The main result of this article is the theorem below that states a sufficient
condition for the local quadratic convergence of the shooting algorithm.

Theorem 6.3 (Convergence of the shooting algorithm). Let ŵ be a feasible tra-
jectory satisfying the PMP that verifies the coercivity condition (5.23). Then the
shooting algorithm is locally quadratically convergent.

Proof. From Theorem 5.3, the trajectory ŵ is a weak minimum for problem (OC).
From Corollary 5.4 and Proposition 5.6, (SLC) holds. Consequently, Theorem 3.2
implies that (OS) is well-posed so that we can properly formulate the shooting al-
gorithm. Therefore, consider some solution (x̄, ū, v̄, p̄, β) of (LS), and the associated
transformed process (ξ̄, ū, ȳ, h̄, χ̄, χ̄h, β

LQ) given by (6.12). The latter is a solution
of (LQS) in view of Lemma 6.1. However, once we assume condition (5.23), the
unique solution to (LQS) is the null trajectory and, since the transformation (6.12)
is one-to-one, the solution to (LS) is also null. But from equation (4.17), the vectors
ν̄ in the kernel of S ′(ν̂) are precisely the solutions of (LS). We conclude that S ′(ν̂)
is injective. In addition S ′ is Lipschitz continuous due to Assumption 1. The claim
follows from Proposition 6.2. �

7. Control-constrained Problems

In this section we extend the proposed algorithm to problems where the controls
are subject to bounds. We denote by (CP) the problem obtained by adding the
following control constraints to (OC):

u(t) ∈ U, a.e. on [0, T ],

0 ≤ vi(t) ≤ 1, a.e. on [0, T ], for i = 1, · · · ,m,
(7.1)

where U is an open subset of Rl. The choice of the bounds 0 and 1 was made for
clarity of the exposition since it simplifies the notation, however all the results here
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presented hold for controls satisfying ai ≤ vi ≤ bi for any pair of bounds such that
ai < bi. Consider the following definition.

Definition 7.1. The component v̂i is said to have a singular arc in an interval I,
whenever 0 < v̂i(t) < 1 a.e. on I. If a component v̂i assumes the value 1 (resp. 0)
a.e. on an interval I, it is said to have an upper bang arc (resp. lower bang arc) on
this interval. If v̂i has either an upper or a lower bang arc on I then we can say,
shortly, that it has a bang arc on I.

Assumption 4. We assume the following hypotheses on the optimal (û, v̂).

(i) Each linear control v̂i, with i = 1, . . . ,m, presents a bang-singular struc-
ture, i.e. v̂i is a finite concatenation of bang and singular arcs.

(ii) The bang-singular structure of v̂ induces a partition of the time interval
[0, T ], that we write as

{0 := T̂0 < T̂1 < T̂2 < · · · < T̂N−1 < T̂N := T }.

At each interval Îk := [T̂k, T̂k+1], every component v̂i is either bang or

singular, and at T̂k some control v̂i switches its arc type, and presents a
discontinuity of first kind. Hence, defining the sets

Sk := {1 ≤ i ≤ m : v̂i is singular on Îk},

Ak := {1 ≤ i ≤ m : v̂i = 0 a.e. on Îk},

Bk := {1 ≤ i ≤ m : v̂i = 1 a.e. on Îk},

there must exist some ρ′ > 0 such that

(7.2) ρ′ < v̂i(t) < 1− ρ′, for all i ∈ Sk, a.e. on t ∈ Îk.

In addition, we assume that the nonlinear control satisfies

(7.3) û([0, T ]) + ρ′B ⊂ U.

(iii) For each k = 1, . . . , N , let vSk
denote the vector with components vi with

i ∈ Sk. To obtain a feedback representation in a similar manner as done
in Section 3, we assume that

(7.4)
û is continuously differentiable in [0, T ],

v̂Sk
is continuous in Îk, for k = 1, . . . , N ,

and that, on each interval Îk, the following form of the generalized strength-
ened Legendre-Clebsch conditions holds

Huu(ŵ, p̂) ≻ 0, −
∂ḦvSk

∂vSk

(ŵ, p̂) ≻ 0.

Assumptions (i) and (ii) can be justified, in the context of control-affine problems,
by the theory of junction conditions. More precisely, in [34], McDanell and Powers
established that when a singular arc has odd order q, the singular controls are
obtained from the 2q-th time derivative of the switching function, and the junction
between singular and bang arcs is either C1 or discontinuous. Many examples
found in the literature fall in the latter category (see e.g. [32, 30]), as well as
the two examples treated in the Section 8 of this work. For further details and
examples concerning junction conditions, we refer to [7]. The regularity of the
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controls assumed in (iii) comes as a consequence of the feedback representation
derived in Section 3.

As a consequence of the minimization of the Hamiltonian given by the PMP, if a
component vi is singular in some interval I, then Hvi(t) = 0 a.e. on I additionally
to Hu(t) = 0. Hence, as done in Section 3, we can use the system

(7.5)

(
Hu

−ḦvSk

)

= 0, a.e. on Îk.

along with item (iii) from Assumption 4 to write the controls û and v̂Sk
in feedback

form, which we represent as

(7.6) û = U(x̂, p̂), v̂Sk
= VSk

(x̂, p̂), for k = 1, . . . , N.

7.1. The transformed problem. Given a feasible control (û, v̂), we call control
structure the configuration of bang and singular arcs of v̂. In (CP), there may
be feasible trajectories with a bang-singular structure different from the one of
(û, v̂). However, if (û, v̂) is a local solution for (CP), it will also be a local solution
for a problem with a fixed control structure. We assume a priori knowledge of
the optimal control structure to formulate a new unconstrained problem whose
feasible controls correspond to controls of the original problem that have such fixed
structure. This is achieved by a reparametrization from [0, T ] to the interval [0, 1]
as described next.

In this new unconstrained problem, for each switching time we associate a state
variable Tk having null dynamics, keeping the convention that T0 = 0 and TN = T .
Such variables are initialized in the algorithm as a rough estimate of the opti-
mal switching times, that will be iteratively tunned by the shooting scheme. For
each interval Ik := [Tk, Tk+1], we also associate a state variable xk, that is the
reparametrization of the state restricted to Ik to the interval [0, 1].

The control variables of the new problem are defined as follows. For each interval
Ik of the partition we define a control variable uk : Ik → R

l that appears nonlinearly
and an affine control vk : Ik → R

|Sk|. This way, each vk has as many entries as the
number of singular components of v̂ in Îk. The bang components of v appear as
constants and not as control variables, i.e. are fixed to either 0 or to 1.

The trajectories of the transformed problem have the form

(7.7) W :=

(

(

xk
)N

k=1

,
(

uk
)N

k=1

,
(

vk
)N

k=1

, (Tk)
N

k=0

)

,

and the transformed problem, denoted as (TP), is the following:

minφ(x1(0), xN(1))

s.t. ẋk = (Tk − Tk−1)





∑

i∈Bk∪{0}

fi(x
k, uk) +

∑

i∈Sk

vki fi(x
k, uk)



 , k = 1, · · · , N,

Ṫk = 0, k = 1, · · · , N − 1,

η(x1(0), xN(T )) = 0,

xk(1) = xk+1(0), k = 1, · · · , N − 1.

Note that given some admissible trajectory (x, u, v) of (CP), and its associated
switching times (Tk), we can obtain a feasible trajectory for (TP) via the following
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transformation

xk(s) := x (Tk−1 + (Tk − Tk−1)s) ,

uk(s) := u (Tk−1 + (Tk − Tk−1)s) ,

vk(s) := v (Tk−1 + (Tk − Tk−1)s) .

for s ∈ [0, 1].(7.8)

In fact, we discuss below that we can derive the weak optimality of a solution for
(TP) from the optimality, in an appropriate sense, of a solution for (CP). To do
this, consider the definition of Pontryagin minimum [35] given next.

Definition 7.2. A feasible trajectory ŵ ∈ W is a Pontryagin minimum of (CP) if,
for any positive N , there exists some εN > 0 such that ŵ is a minimum in the set
of feasible trajectories w = (x, u, v) ∈ W satisfying

‖x− x̂‖∞ < εN , ‖(u, v)− (û, v̂)‖1 < εN , ‖(u, v)− (û, v̂)‖∞ < N.

Lemma 7.1. If ŵ is a Pontryagin minimum of (CP), then Ŵ obtained from ŵ
using transformation (7.8) is a weak minimum of (TP).

The proof of this lemma follows as a direct extension of a similar result for the
totally control-affine case given in [4]. For the sake of completeness, we included
the proof in Appendix B.

7.2. The shooting algorithm for the transformed problem. In order to have
an algorithm suitable to solve control constrained problems, our final step is to
define a proper shooting function and apply the procedure described in Section 4.

We start by stating the PMP for this unconstrained problem (TP). Define the
endpoint Lagrangian

(7.9) ℓ̃ := φ(x1(0), xN (1)) +

dη∑

j=1

βjηj(x
1(0), xN (T )) +

N−1∑

k=1

θk
(
xk(1)− xk+1(0)

)
.

Note that each multiplier βj is associated with the endpoint constraints that come
from the original problem and each θk is associated with the additional constraints
of continuity of the state from (TP). The pre-Hamiltonian of (TP) is given by

H̃ :=

N∑

k=1

(Tk − Tk−1)H
k,

where Hk := pk ·





∑

i∈Bk∪{0}

fi(x
k, uk) +

∑

i∈Sk

vki fi(x
k, uk)



 . Hence, from the PMP, the

costates follow the dynamics

(7.10) ṗk = −(Tk − Tk−1)DxkHk,
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with transversality conditions

p1(0) = −Dx1
0
φ−

dη∑

j−1

βjDx1
0
ηj(x

1(0), xN (T )),(7.11)

pk(1) = θk, for k = 1, · · · , N − 1,
pk(0) = θk−1, for k = 2, · · · , N,

(7.12)

pN (1) = DxN
1
φ+

dη∑

j−1

βjDxN
1
ηj(x

1(0), xN (T )).(7.13)

Note that equation (7.12) can be replaced by

(7.14) pk(1) = pk+1(0), for k = 1, · · · , N − 1,

hence, eliminating the multipliers θk. We must also address the costates pTk asso-
ciated with the switching times, which satisfy

(7.15) ṗTk = −Hk +Hk+1, pTk (0) = 0, pTk(1) = 0, for k = 1, · · · , N − 1.

Combining all conditions from (7.15), we obtain

(7.16)

∫ 1

0

(
Hk+1 −Hk

)
dt = pTk(0)− pTk(1) = 0.

Since the dynamics are autonomous, the Hamiltonian is constant for the optimal
trajectory and we equivalently express the conditions (7.16) for pTk as

(7.17) Hk = Hk+1, for k = 1, · · · , N − 1.

Now we are in position to adapt the shooting scheme for solving (TP). Following
the steps from Section 4 we start by finding the feedback form for the controls. It
suffices to use the representation given in equation (7.6)

(7.18) uk = U
(
xk, pk

)
, vk = VSk

(
xk, pk

)
, for k = 0, · · · , N.

By Lemma 7.1 such controls must also be feasible for (TP) and when the feedback
arguments x̂k and p̂k correspond to the nominal trajectory, we obtain optimal
controls.

We must also define an appropriate shooting function that will express the sta-
tionarity of the Hamiltonian, the initial-final constraints and transversality con-
ditions. Stationarity with respect to the nonlinear controls is equivalent to the
feedback representation for u given in equation (7.6). For the linear controls, the

feedback form is equivalent to ḦvSk
= 0. Hence we must also impose Hk

vk
i

(0) = 0

and Ḣk
vk
i

(0) = 0 to ensure the stationarity Hvk = 0.

Note that we can choose to include the constraints related the continuity of
the states and costates or integrate each xk and pk using the final values of xk−1

and pk−1 as initial conditions. The clear advantage of the latter strategy is the
smaller number of shooting variables, i.e. the initial conditions for states and
costates at the switching times can be omitted. On the other hand, explicitly
including these constraints makes the algorithm more stable numerically and favors
the parallelization of computational implementations, see [41].
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The following is the shooting function associated to (TP) with the full set of
shooting variables
(7.19)

S : RNn × R
Nn,∗ × R

N−1 × R
dη → R

(N−1)n+dη × R
(N+1)n+N−1+2

∑

|Sk|,∗

ν 7→ S(ν) :=



















η(x1(0), xN (1))
(
xk(1)− xk+1(0)

)

k=1,··· ,N−1(
pk(1)− pk+1(0)

)

k=1,··· ,N−1

p1(0) +Dx1
0
ℓ̃
(
x1(0), xN (1)

)

pN (1)−DxN
1
ℓ̃
(
x1(0), xN (1)

)

(
Hk(1)−Hk+1(0)

)

k=1,··· ,N−1(
pi · fi

(
xi, U i

)
(0)
)

i ∈ Sk
k = 1, . . . , N(

pi · [f0, fi]
x(0)

)

i ∈ Sk
k = 1, . . . , N



















where we define the vector of shooting arguments as

(7.20) ν :=

(

(

xk(0)
)N

k=1

,
(

pk(0)
)N

k=1

, (Tk)
N−1

k=1
, β

)

.

We recall equation (3.4) that gives a concise analytical form for Ḣvi and was used
in the formulation of the last component of the above shooting function.

Since the new problem (TP) falls in the same category of unconstrained problem
(OC), we join Lemma 7.1 and Theorem 6.3 in the following result.

Theorem 7.2. If ŵ is a Pontryagin minimum of (CP) such that Ŵ given in
(7.7) satisfies the coercivity condition (5.23) for problem (TP), then the shooting
algorithm for (TP) is locally quadratically convergent.

8. Examples

8.1. Degenerate Linear Quadratic Problem. In this section we discuss the
application of the shooting algorithm to a toy problem. We consider the following
partially-affine problem, inspired by the examples in [16, 1].

(8.1)

minimize −2x2(2) +

∫ 2

0

(
x2
1 + x2

2 + u2 + 10x2v
)
dt

subject to ẋ1 = x2 + u,
ẋ2 = v,
0 ≤ v(t) ≤ 0.5, a.e. on [0, T ],
x1(T ) = 1,
x1(0) = x2(0) = 0.

We start by obtaining an estimate for the optimal control structure. This was
done by using the BOCOP package [10], where we found that the optimal solution
presents a bang-singular-bang structure.

Figure 1 shows a comparison of the solutions of our shooting algorithm and the
one obtained from BOCOP. The latter already shows a good approximation of the
singular control, however it has poorer performance around the switching times.
Another interesting numerical phenomenon usually observed in direct methods, is
the fact that the control variables have a tendency to have a slower convergence than
the state and costate variables, see [25]. This can be perceived in the comparison
graph of the nonlinear controls (see also Figure 1). Since the shooting algorithm
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uses the analytical expression of the optimal controls in feedback form, we can
expect more accurate results.
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Figure 1. Optimal trajectories and controls for problem (8.1)

8.2. Optimal Control of an SIRS Epidemiological Model. In this section we
follow [19, 28] where the authors discuss problems regarding the optimal control
of various SIR (susceptible-infected-recovered) models used to describe the spread
of an epidemic in some demographic population. The control is performed either
through a term v representing vaccination of susceptible individuals S, leading them
to the recovered, and temporarily immune, class R; or through the treatment of
infected individuals that is represented by a second control variable u, taking in-
dividuals from the infected compartment I to R. In this article, we consider the
variation known as SIRS model, which takes into account the effect of temporary
immunity of recovered individuals R, gradually reintroducing them into the sus-
ceptible class S. This brief discussion is encapsulated in the system below, the
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description of the involved parameters being given in Table 1:

(8.2)

Ṅ = F (N)− δI − µN,

Ṡ = F (N)− β IS
N
− vS + ω(N − S − I)− µS,

İ = β IS
N
− (γ + δ + u)I − µI.

Here N represents the total number of individuals in the population, N = S+I+R,
the function F : [0,K) → R+ is the population growth function assumed to be
logistic of the form F (N) = αN(1 −N/K).

Parameter Biological Meaning Values

N0 initial total population 5000 humans
S0 initial susceptible population 4500 humans
I0 initial infected population 499 humans
α population growth rate 4× 10−5 days−1

K carrying capacity 5000
µ natural death rate of population 10−5 days−1

β incidence rate 0.5 days−1

ω waning rate 0.01 days−1

γ recovery rate 0.1 days−1

δ death rate due to disease 0.1 days−1

B1 cost per infection 1
B2 cost per vaccination 50
B3 cost per treatment 1000
vmax maximum vaccination rate 0.25
T horizon of analysis 100 days

Table 1. Biologically feasible parameters.

Our goal is to minimize the amount of ill individuals with the lowest cost of
vaccination and treatment over a time window, hence we choose the cost function

(8.3) C(t) :=

∫ t

0

(
B1I(s) +B2v(s) +B3u

2(s)
)
ds

The choice of the terms B1I and B3u
2 follows [19]. When compared to treatment

policies, vaccination is more easily implemented and hence appears we choose to
make it appear linearly in the cost, as done in [28]. The linear dependence on
the vaccination might result in bang-bang optimal controls as in [6], however, the
parameters values in Table 1 were chosen to favor the appearance of singular arcs
among realistic parameters given in [19].

Now we introduce the optimal control problem in Mayer form

(8.4)

minimize C(T )
subject to (8.2),

0 ≤ v(t) ≤ vmax, 0 ≤ u(t) a.e. on [0, T ]
N(0) = N0, S(0) = S0, I(0) = I0, C(0) = 0.

We show below that the restriction of non negativity on the nonlinear control u is
redundant, since a “negative treatment” is never optimal.

Proposition 8.1. If (û, v̂) is optimal for (8.4), then û ≥ 0 a.e. on [0, T ].
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Proof. Suppose an optimal solution (û, v̂) is such that û presents negative values in
a set of positive measure. Define a new control strategy, where v̂ remains unchanged
and exchange û by ũ := max{û, 0}. The cost associated with v̂ is unaffected, the

term depending on the treatment,
∫ T

0
u2(s)ds, is clearly less expensive for ũ and

it remains to be checked the influence on the cost associated with the amount of
infected individuals of this strategy.

With this in mind, let (N,S, I) and (Ñ , S̃, Ĩ) be the solutions for (8.2) with
the control strategies (û, v̂) and (ũ, v̂), respectively. To conclude our argument, it

suffices to show that the quantity z := Ĩ − I is non positive. Note that

ż = ˙̃I − İ = βĨ
S̃

Ñ
− βI

S

N
− (γ + δ + µ)(Ĩ − I) + ûIχ{û<0}.

Hence, we can define a continuous function c(t), depending on S̃, Ñ , S,N , such that

ż ≤
(
βc(t)−

(
γ + δ + µ+ ûξ{û>0}

))
z + ûIχ{û<0}.

Setting a(t) := βc(t)−
(
γ + δ + µ+ ûχ{û>0}

)
and b(t) := ûIχ{û<0}, by Gronwall’s

lemma, we have that

z(t) ≤ z(0) exp

(∫ t

0

a(s)ds

)

+

∫ t

0

b(s) exp

(∫ s

0

a(σ)dσ

)

ds.

By definition, z(0) = 0 and b ≤ 0, thus z ≤ 0, this is Ĩ ≤ I. �

With the aid of the previous Proposition 8.1, our control problem (8.4) satisfies
all assumptions from Section 7, since the constraint u ≥ 0 can be removed, and
we can apply our algorithm. The singular vaccination strategies are obtained using
the expression for Ḧv derived in (3.15). The complete analytical computation can
be found in Appendix A, however, our computational implementation relies on
SymEngine - a Computer Algebra System (CAS), see [13] - that automates this
laborious task and other computations necessary to formulate our algorithm.

As done for the previous example, we used BOCOP [10] to get an estimate of
the shooting parameters and switching times in order to initialize our algorithm.
The results are shown in Figures 2 and 3.

9. Conclusion

In this article we have studied the shooting algorithm for partially-affine optimal
control problems, this is, problems where some control components appear linearly
and others non linearly in the Hamiltonian. Many of the results here discussed
are extensions of previous works concerning the totally-affine case. Such extensions
were only possible after the development of no-gap second order necessary and
sufficient conditions for weak optimality (given in [2]). We have also revised second
order analysis results that enabled us to provide a more detailed characterization
of singular controls. Additionally, we were able to relate the mentioned sufficient
conditions to the well-known strengthened generalized Legendre-Clebsch conditions.
Concerning the implementation of the shooting algorithm, we were able to automate
lengthy and tedious computations necessary for its formulation.

The case with control constraints is also tackled, by means of a transformation
that reduces this case to the unconstrained one. Both this transformation and the
computation of singular controls are automated in our implementation, which is
demonstrated by two numerical examples. The first one was chosen to illustrate
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Figure 2. Optimal trajectories for problem (8.4).
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how even simple problems can become fairly large once we introduce the associated
transformed problem. The second example discusses the optimal control problem of
an SIRS epidemiological model with vaccination and treatment acting as controls.
This problem requires lengthy computations to obtain the analytical expressions of
the singular arcs and serves as a proof of usefulness of our automated implementa-
tion.

Appendix A. Computation of Singular Vaccination Strategies

In this appendix we develop the computations of the singular vaccination strate-
gies from Section 8.2 in full detail. To shorten notation, we define the state vector
x := (N,S, I, C)T and rewrite the dynamics as

(A.1) ẋ = f0(x, u) + vf1(x)

where

(A.2) f0(x, u) =







F (N)− δI − µN
F (N)− β IS

N
+ ωR− µS

β IS
N
− (δ + γ + u+ µ)I

B1I +B3u
2







, f1(x) =







0
−S
0
B2







Following the arguments from Section 3, the singular arcs for the linear control,
i.e. vaccination, satisfy the following expression

(A.3) γ01 + vsingγ11 = 0.

Let us compute the quantities γ01 and γ11, as defined in (3.15). Initially note that

Df0 =









F ′(N) 0 −δ 0
F ′(N) + ω + β SI

N2 −ω − β I
N

−ω − β S
N

0
−β SI

N2
I
N

β S
N

− (δ + γ + u+ µ) 0
0 0 B1 0









,

Df1 =









0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0









.

In order to compute γ01 and γ11, we start with the Lie bracket [f0, f1]:

[f0, f1] = Df1f0 −Df0f1 =







0
− (F (N) + ω(N − I))

β SI
N

0







.

Notice that [f0, f1] does not depend on the nonlinear control u, hence the expres-
sions for γ01 and γ11 become p · [f0, [f0, f1]] and p · [f1, [f0, f1]], respectively. For
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p · [f1, [f0, f1]] we have

[f1, [f0, f1]] = D[f0, f1]f1 −Df1[f0, f1]

=









0 0 0 0
−F ′(N) − ω 0 ω 0

−β SI

N2 β I
N

β S
N

0
0 0 0 0

















0
−S
0
B2









−









0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

















0
− (F (N) + ω(N − I))

β SI
N

0









=









0
0

−β SI
N

0









−









0
F (N) + ω(N − I)

0
0









= −2









0
0

β SI
N

0









+ [f0, f1].

Using the Goh conditions (3.1) and the fact that Ḣv = 0, we obtain

(A.4) γ11 = p · [f1, [f0, f1]] = −2β
SIpI
N

.

Moving on to [f0, [f0, f1]], after some algebraic simplifications, we have

[f0, [f0, f1]] = D[f0, f1]f0 −Df0[f0, f1]

=









0 0 0 0
−F ′(N)− ω 0 ω 0

−β SI

N2 β I
N

β S
N

0
0 0 0 0

















F (N)− δI − µN
F (N)− β IS

N
+ ωR − µS

β IS
N

− (δ + γ + u+ µ)I
B1I +B3τ

2









−









F ′(N) 0 −δ 0
F ′(N) + ω + β SI

N2 −ω − β I
N

−ω − β S
N

0
−β SI

N2
I
N

β S
N

− (δ + γ + u+ µ) 0
0 0 B1 0









[f0, f1]

= β
SI

N
w1 +w2 +

(

β
I

N
+ ω

)

[f1, [f0, f1]],

where the vectors w1 and w2 are given by

w1 :=









δ
2ω + β S

N

−(F (N)− δI)/N + 2β I
N

pI
pS

−B1









,

w2 :=









0
−(F ′(N) + ω)(F (N)− δI)− ωI(δ + γ + u)

0
0









.

Notice that the appearance of the term [f1, [f0, f1]] simplifies the final expression of
the singular controls since this term cancels out with the denominator γ11. Hence,
the expression for the singular control becomes

vsing = −
γ01
γ11

= −

(

ω + β
I

N

)

+
p

2pI
·

(

w1 +
N

βSI
w2

)

,(A.5)
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Appendix B. Proof of Technical Lemmas

B.1. Proof of Lemma 5.5. In this section we prove the following identity

(B.1) E = −
∂Ḣv

∂u
and −

∂Ḧv

∂v
= R− EH−1

uu E
T ,

that are relevant in the recovery of the strengthened Legendre-Clebsch conditions
(SLC) from the sufficient conditions stated in Theorem 5.3. Our strategy will be
to establish the equality of the matrices involved entry wise.

The first identity in (B.1) is easily obtained with the definition of E in (5.13).
Before proceeding to the second one, let us establish some conventions that will
make the computations clearer. Many conditions throughout the text state that
some quantity Q is null when evaluated along the optimal trajectories. For instance,
we can recall the Goh conditions p̂ · [fi, fj](ŵ) = 0. We want to stress out a
distinction from the case that some other quantity N identically assumes the value
0, as is the case for Hvv ≡ 0. We will make a distinction of these two cases with
the following notation

(B.2) Q = 0, N ≡ 0.

Naturally, if we take the time derivative of some quantity Q = 0, this property is
maintained and we obtain Q̇ = 0. However, this is not true when we take partial
derivatives, this is, ∂vQ is not necessarily null. With this in mind we recall the
expressions from (3.15) that were used to obtain the linear controls. While these
expressions are suitable for this task, we cannot use them to compute the partial
derivatives ∂vḦv since we have removed terms that vanish due to the Goh conditions
in Proposition (3.1) or as a consequence of the Legendre-Clebsch conditions (3.1).

The full expressions we are interested in are still easily obtainable by using
formula (3.2). We get,

Ḧvi = p̂ · [f, [f0, fi]] + p̂ ·Du[f0, fi] ˙̂u

+

m∑

k=1

{

˙̂vkp̂ · [fk, fi] + v̂k
d

dt
p̂ · [fk, fi]

}

+
d

dt
(Hviu)

˙̂u+Hviu
¨̂u.

(B.3)

Notice that the coefficient of ¨̂u is zero, so we do not require further regularity for
û. Taking the partial derivative w.r.t. vj in (B.3) yields

∂Ḧvi

∂vj
= p̂ · [fj, [f0, fi]] + p̂ ·Du[f0, fi]

∂ ˙̂u

∂vj

+
m∑

k=1







∂ ˙̂vk
∂vj

p̂ · [fk, fi]
︸ ︷︷ ︸

=0

+ ˙̂vkp̂ ·
∂

∂vj
[fk, fi]

︸ ︷︷ ︸
≡0

+
∂v̂k
∂vj

d

dt
p̂ · [fk, fi]

︸ ︷︷ ︸
=0

+v̂k
∂

∂vj

d

dt
p̂ · [fk, fi]

︸ ︷︷ ︸

=:Ak







+
∂

∂vj

d

dt
(Hviu)

˙̂u

︸ ︷︷ ︸

=:B

+
d

dt
(Hviu)

︸ ︷︷ ︸
=0

∂ ˙̂u

∂vj
+

∂

∂vj
Hviu

︸ ︷︷ ︸
≡0

¨̂u+Hviu
︸ ︷︷ ︸
=0

∂ ¨̂u

∂vj
.

(B.4)

Once again, the coefficients of ˙̂v and ¨̂u vanish so we do not require any further
regularity on the optimal controls. By computing the remaining time derivatives,
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we obtain the expressions

Ak =
∂

∂vj

d

dt
p̂ · [fk, fi] = p̂ · [fj, [fk, fi]] + p̂ ·Du[fk, fi]

∂ ˙̂u

∂vj
,(B.5)

B =
∂

∂vj

d

dt
(Hviu)

˙̂u = p̂ ·

(
∂2fi
∂x∂u

fj −
∂fj
∂x

∂fi
∂u

)

˙̂u+ ˙̂uTHviuu

∂ ˙̂u

∂vj
.(B.6)

The proof of identity (B.1) is organized in the following 3 claims.

Claim 1. The entries of the matrix R = fT
v Hxxfv−

(
HvxB + (HvxB)T

)
− Ṡ, given

in equation (5.13), satisfy

Rij = −

{

p̂ · [fj, [f, fi]] + p̂ ·

(
∂2fi
∂x∂u

fj −
∂fj
∂x

∂fi
∂u

)

˙̂u

}

.

Claim 2. It holds
∂ ˙̂u

∂vj
= −H−1

uuE
T
(:,j),

where the matrix E = fT
v HT

ux −Hvxfu was introduced in (5.13).

Claim 3. For the matrix E given in (5.13), the following expression holds

−E(i,:) = p̂ ·Du[f, fi] + ˙̂uTHviuu.

Proof of Claim 1. In our case, where we assume uniqueness of multipliers, the
matrix S given in (5.14) takes the form S = Hvxfv, since Hvxfv is symmetric due
to Goh conditions. For i, j = 1, . . . ,m, we obtain

Ṡij =
d

dt

(

p̂ ·
∂fi
∂x

fj

)

= p̂ ·

[

f,
∂fi
∂x

fj

]

+Dup̂ ·
∂fi
∂x

fj ˙̂u

= p̂ ·

[

f,
∂fi
∂x

fj

]

+ p̂ ·

(
∂fi
∂x

∂fj
∂u

+
∂2fi
∂x∂u

fj

)

˙̂u.

(B.7)

We will make use of the following expression that comes directly from the definition

of Lie brackets: p̂·
∂f

∂x
fi = p̂·

∂fi
∂x

f+p̂·[fi, f ], for i = 1, . . . ,m. Clearly, the additional

term p̂ · [fi, f ] vanishes, however, as we have discussed, we cannot neglect it once

we take partial derivatives Summing and subtracting the term p̂ ·
∂2f

∂x2
fifj from the

expression for p̂ ·

[

f,
∂fi
∂x

fj

]

we obtain

p̂ ·

[

f,
∂fi
∂x

fj

]

= p̂ ·

(
∂

∂x

(
∂fi
∂x

fj

)

f −
∂f

∂x

∂fi
∂x

fj ±
∂2f

∂x2
fifj

)

= p̂ ·

(
∂

∂x

(
∂fi
∂x

fj

)

f −
∂

∂x

(
∂fi
∂x

f + [fi, f ]

)

fj +
∂2f

∂x2
fifj

)

= p̂ ·

(
∂fi
∂x

[f, fj] +
∂

∂x
[f, fi]fj +

∂2f

∂x2
fifj

)

Hence, from (B.7), we have

Ṡij =
(
fT
v Hxxfv

)

ij
+ p̂ ·

∂fi
∂x

[f, fj ] + p̂ ·
∂

∂x
[f, fi]fj + p̂ ·

(
∂fi
∂x

∂fj
∂u

+
∂2fi
∂x∂u

fj

)

˙̂u.
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Moving on to the terms (HvxB)ij and (HvxB)
T
ij = (HvxB)ji, and recalling the

definition of B = fxfv −
d
dtfv, given in (5.8), we obtain that the column of index j

for this matrix assumes the form B(:,j) = −
(

[f, fj] +
∂f
∂u

˙̂u
)

, so that

Hvx(i,:)B(:,j) = −p̂ ·
∂fi
∂x

(

[f, fj ] +
∂f

∂u
˙̂u

)

.

Summing all terms to get the matrix R, we obtain the desired identity. �

Proof of Claim 2. To obtain an expression for
∂ ˙̂u

∂vj
, we start by solving the equation

Ḣu = 0 for ˙̂u. We obtain

˙̂u = −H−1
uu

(

Huxf −
∂fT

∂u
HT

x

)

.

Taking the partial derivative w.r.t. vj in the latter equation yields

∂ ˙̂u

∂vj
=−H−1

uu

(

Huxfj −
∂fT

∂u
HT

xvj

)

︸ ︷︷ ︸

=ET
(:,j)

−H−1
uu

(

Hvjuxf −
∂fT

j

∂u
HT

x

)

︸ ︷︷ ︸

= ∂
∂x

Hvju
˙̂x+ ∂

∂p
Hvju

˙̂p=−Huuvj
˙̂u

−
∂H−1

uu

∂vj

(

Huxfj − p̂ ·
∂fj
∂x

fu

)

︸ ︷︷ ︸

=−Huu
˙̂u

=−H−1
uu E

T
(:,j) +

(

H−1
uu

∂Huu

∂vj
+

∂H−1
uu

∂vj
Huu

)

︸ ︷︷ ︸

= ∂
∂vj

H−1
uu Huu=0

˙̂u = −H−1
uu E

T
(:,j).

�

Proof of Claim 3. Let us expand Du (p̂ · [f, fi]):

Du (p̂ · [f, fi]) =
∂

∂u

(

p̂
∂fi
∂x

f − p̂
∂f

∂x
fi

)

= p̂ ·
∂fi
∂x

∂f

∂u
− fT

i Hxu

︸ ︷︷ ︸

=−E(i,:)

+ fTHvixu −Hx

∂fi
∂u

︸ ︷︷ ︸

=
(

∂Hviu

∂x
˙̂x+

∂Hviu

∂p
˙̂p
)T

= −E(i,:) − ˙̂uTHviuu.

�

Finally, we add the contributions of all these claims to prove Lemma 5.5.
Proof of Lemma 5.5. It suffices to check the expression for ∂vjḦvi in (B.4):

∂Ḧvi

∂vj
= p̂ · [fj , [f, fi]] + p̂ ·

(
∂2fi
∂x∂u

fj −
∂fj
∂x

∂fi
∂u

)

˙̂u

︸ ︷︷ ︸

−Rij

+ p̂ ·Du[f, fi] + ˙̂uTHviuu
︸ ︷︷ ︸

−E(i,:)

∂ ˙̂u

∂vj
︸︷︷︸

−H
−1
uuET

(:,j)

= −
(
R− EH−1

uu E
T
)

ij
.

This concludes the proof. �
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B.2. Proof of Lemma 6.1
We must check that given a solution (x̄, ū, v̄, p̄, β) of (LS), the corresponding

transformed variables (ξ̄, ū, ȳ, h̄, χ̄, χ̄h, β
LQ) solve (LQS).

Starting with the state ξ̄, we recall the dynamics of the linearized variable x̄

given in (4.8) so that one has ˙̄ξ = ˙̄x− ḟvȳ − fv ˙̄y = fxξ̄ + fuū + Bȳ, retrieving the
dynamics in (6.2). The initial conditions are trivially satisfied since ȳ(0) = 0. The
dynamics for h̄ are satisfied by the definition. For the costate dynamics we recall
the dynamics of the linearized costates from (4.9) and the definition of the matrix
M in (5.13). We get

− ˙̄χ = − ˙̄p− ˙̄yTHvx − ȳT Ḣvx

= (p̄+ ȳTHvx)
︸ ︷︷ ︸

=χ̄

fx + (x̄− fvȳ)
T

︸ ︷︷ ︸

=ξ̄T

Hxx + ȳ (fT
v Hxx − Ḣvx −Hvxfx)

︸ ︷︷ ︸

=M

= χ̄fx + ξ̄THxx + ȳTM.

Hence the dynamics of χ̄ matches (6.5). From equation (6.12) we obtain χ̄(0) =
p̄(0) and deduce (6.6). For the final conditions one substitutes the expressions
for x̄(T ) and p̄(T ) into (4.15) and conclude since S = Hvxfv = fT

v HT
vx, which is

a consequence of the Goh conditions (3.1).This way we recover the transversality
condition for χ̄(T ).

Finally we must check the stationarity (6.8) and (6.9) of the Hamiltonian for
(LQS). Starting from (4.13) and (6.12), we obtain

0 = (χ̄− ȳTHvx)fu + (ξ̄ + fvȳ)
THT

ux + ūTHuu

= χ̄fu + ξ̄THT
ux + ūTHuu + ȳT (fT

v HT
ux −Hvxfu

︸ ︷︷ ︸

=E

),

which corresponds to the stationarity with respect to ū. On the other hand, the
same substitutions applied to (4.14) yield 0 = χ̄fv + ξ̄THT

vx. Differentiating with
respect to time and using the definitions of B in (5.8) and E in (5.13), we recover the
stationarity (6.9) with respect to ȳ. This shows that the tuple (ξ̄, ū, ȳ, h̄, χ̄, χ̄h, β

LQ)
is a solution of (LQS) and concludes the proof. �

B.3. Proof of Lemma 7.1. Since ŵ is a Pontryagin minimum of (CP), from Defi-
nition 7.2, there exists ε > 0 such that

(B.8) ‖x− x̂‖∞ < ε, ‖(u, v)− (û, v̂)‖1 < ε, ‖(u, v)− (û, v̂)‖∞ < 1.

Let Ŵ be the transformation of ŵ through (7.8). We now prove that Ŵ is weakly
optimal for (TP). Hence we search appropriate δ̄, ε̄ for which all feasible trajectories
W =

(
(xk), (uk), (vk), (Tk)

)
of (TP) that satisfy

(B.9)
∣
∣
∣Tk − T̂k

∣
∣
∣ < δ̄,

∥
∥(uk, vk)− (ûk, v̂k)

∥
∥
∞

< ε̄, for all k = 1, · · · , N



30 M.S. ARONNA AND J.M. MACHADO

will be mapped into a neighborhood of ŵ where it is optimal. Such mappingW 7→ w
is done as follows

x(t) := xk

(
t− Tk−1

Tk − Tk−1

)

, u(t) := uk

(
t− Tk−1

Tk − Tk−1

)

, for t ∈ Ik,(B.10)

vi(t) :=







0, if t ∈ Ik and i ∈ Ak,

vki

(
t−Tk−1

Tk−Tk−1

)

, if t ∈ Ik and i ∈ Sk,

1, if t ∈ Ik and i ∈ Bk.

(B.11)

The dynamics (2.2) are clearly satisfied by (x, u, v) obtained from (B.10)-(B.11).
The end-point constraints in (2.3) are also easy to verify since x(0) = x1(0) and
x(T ) = xN (1) along with the feasibility of W .

The last step to check feasibility of w are the control constraints. For the non-
linear controls, note that since

∥
∥uk − ûk

∥
∥
∞

< ε̄, we have that ‖u− û‖∞ < ε̄.

Recalling ρ′ given in (7.2)-(7.3), if we choose ε̄ < ρ′, then u ([0, T ]) ⊂ U . To discuss
the feasibility of the linear controls, from equation (7.2), we can choose ε̄ so that,
whenever t ∈ Ik and i ∈ Sk,

(B.12) 0 < ρ′ − ε̄ ≤ vi(t) ≤ 1− ρ′ + ε̄ < 1.

On the other hand, for i ∈ Ak ∪Bk, we know that vi(t) ∈ {0, 1} in view of (B.11),
so that the control constraints are still satisfied. This concludes the proof of the
feasibility of (x, u, v).

In the sequel, we find δ̄ and ε̄ so that, if W satisfies (B.9), then the transformed
w verifies (B.8) for the given ε. The analysis is analogous for both controls u and
v, hence we will conduct the calculations only for u. We have

(B.13)

∫

Ik∩Îk

|ui(t)− ûi(t)|dt ≤

∫

Ik∩Îk

∣

∣

∣

∣

uk
i

(

t− Tk−1

Tk − Tk−1

)

− ûk
i

(

t− Tk−1

Tk − Tk−1

)∣

∣

∣

∣

dt

+

∫

Ik∩Îk

∣

∣

∣

∣

∣

ûk
i

(

t− Tk−1

Tk − Tk−1

)

− ûk
i

(

t− T̂k−1

T̂k − T̂k−1

)∣

∣

∣

∣

∣

dt.

The first integral in the r.h.s. of latter display is bounded by ε̄|Ik ∩ Îk| in view
of (B.9). For the second term, recall that û is continuous on [0, T ] and so are

the components of ûk over Îk, so that they are uniformly continuous over these
intervals. Therefore, for each k = 1, · · · , N, we can find some δ̄k > 0 such that, if
|Tk − T̂k| < δ̄k, then

∣
∣
∣
∣
∣
ûk
i

(
t− Tk−1

Tk − Tk−1

)

− ûk
i

(

t− T̂k−1

T̂k − T̂k−1

)∣
∣
∣
∣
∣
< ε̄

for every component of ûk. Hence we only need to choose δ̄ := min
k=1,··· ,N

δ̄k. We

proved that

(B.14)

∫

Ik∩Îk

|ui(t)− ûi(t)|dt ≤ 2ε̄|Ik ∩ Îk|.

Next, we need to estimate the integral outside the intersection Ik ∩ Îk. We assume

w.l.o.g. that Tk < T̂k hence, in view of (B.9),

(B.15)

∫ T̂k

Tk

|ui(t)− ûi(t)|dt ≤ δ̄ε̄.
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Adding up all the terms, we get from (B.14)-(B.15), that

‖ui − ûi‖1 < ε̄(2T + (N − 1)δ̄).

An analogous estimate can be obtained for ‖v− v̂‖1. Finally, taking into account all
the control components m of the linear controls and l from the nonlinear controls,
we get that, if

ε̄(2T + (N − 1)δ̄) <
ε

m+ l
,

then ‖u− û‖1 < ε, as desired.
�
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