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roll the dice
if you’re goin to try, go all the go all the way,
way. there is no other feeling like
otherwise, don’t even start. that.

you will be alone with the
if you’re going to try, go all the gods
way. and the nights will flame with
this could mean losing girlfriends, fire.
wives, relatives, jobs and
maybe your mind. do it, do it, do it.

do it.
go all the way.
it could mean not eating for 3 or all the way
4 days. all the way.
it could mean freezing on a
park bench. you will ride life straight to
it could mean jail, perfect laughter, it’s
mockery, the only good fight
isolation. there is.
isolation is the gift,
all the others are a test of your,
endurance, of
how much you really want to
do it.
and you’ll do it
despite rejection and the
worst odds
and it will be better than
anything else
you can imagine.

Charles Bukowski
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“ América latina no quiere ni tiene por qué ser un alfil sin albedrı́o, ni tiene nada de
quimérico que sus designios de independencia y originalidad se conviertan en una
aspiración occidental. No obstante, los progresos de la navegación que han reducido
tantas distancias entre nuestras Américas y Europa, parecen haber aumentado en
cambio nuestra distancia cultural. ¿Por qué la originalidad que se nos admite sin
reservas en la literatura se nos niega con toda clase de suspicacias en nuestras ten-
tativas tan difı́ciles de cambio social? ¿Por qué pensar que la justicia social que los
europeos de avanzada tratan de imponer en sus paı́ses no puede ser también un
objetivo latinoamericano con métodos distintos en condiciones diferentes? No: la
violencia y el dolor desmesurados de nuestra historia son el resultado de injusticias
seculares y amarguras sin cuento, y no una confabulación urdida a 3 mil leguas de
nuestra casa. Pero muchos dirigentes y pensadores europeos lo han creı́do, con el in-
fantilismo de los abuelos que olvidaron las locuras fructı́feras de su juventud, como
si no fuera posible otro destino que vivir a merced de los dos grandes dueños del
mundo. Este es, amigos, el tamaño de nuestra soledad.
(· · · )
Ante esta realidad sobrecogedora que a través de todo el tiempo humano debió de
parecer una utopı́a, los inventores de fábulas que todo lo creemos nos sentimos con
el derecho de creer que todavı́a no es demasiado tarde para emprender la creación de
la utopı́a contraria. Una nueva y arrasadora utopı́a de la vida, donde nadie pueda
decidir por otros hasta la forma de morir, donde de veras sea cierto el amor y sea
posible la felicidad, y donde las estirpes condenadas a cien años de soledad tengan
por fin y para siempre una segunda oportunidad sobre la tierra.”

Gabriel Garcı́a Márquez - Extracted from his Nobel prize speech
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M.Sc.

On the Shooting Algorithm for Partially Affine Control Problems

by João Miguel MACHADO

In this thesis we propose a shooting algorithm for partially affine optimal control
problems, this is, systems in which the controls appear both linearly and nonlin-
early in the dynamics. Since the shooting system generally has more equations than
unknowns, the algorithm relies on the Gauss-Newton method. As a consequence,
the convergence is locally quadratic provided that the derivative of the shooting
function is Lipschitz continuous at the optimal solution. We provide a proof of the
convergence for the proposed algorithm using recently developed second order con-
ditions for weak optimality of partially affine problems. We illustrate the applicabil-
ity of the algorithm by solving an optimal treatment-vaccination epidemiological
problem.
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Introduction

Optimization has been a central branch of applied mathematics for many years. The
most general problem can be stated as follows

minimize φ(x)
subject to x ∈ K.

Where φ : X → R is a function often called the cost function defined over a Banach
space X, or over some subset of such space, and K ⊂ X is the feasible set, the set
of points perceived as viable in some sense, by the agent willing to perform such
optimization.

As examples of famous optimization problems, we can mention the classical
least squares regression commonly used in statistics to find optimal estimators, or
the Markowitz problem for portfolio optimization in finance. Even thought many
real problems can be accurately described in such form, notice that this approach
to choose an optimal strategy does not take into account the underlying dynamics
of the process of interest. The area of mathematics that has had the most success in
modeling the dynamical evolution of processes in time is Differential Equations.

It was only a matter of time that mathematicians would start to wonder if this
power to describe the evolution of complex systems could be used to control their
behavior with some prescribed goal in mind. Thus came the birth of Control Theory
addressing questions such as controllability; what conditions should a system satisfy
in order for one to be able to drag its states from a given initial condition to another
arbitrary state? How can we formalize the notion of stability? Given a naturally
unstable system, when one is able to act on it in order to make it stable?

There is a vast literature covering such questions, but given that one is able to
control a system, how can it be controlled in an optimal manner? These are the ques-
tions that the field of Optimal Control is concerned with. Having such considerations
in mind, an optimal control problem is not so different than a classical optimiza-
tion problem. The only difference is that now we must figure out how to deal with
differential equations as constraints for our optimization. In fact, the way to deal
with them is not so different than what is done in the classical theory of Lagrange
multipliers to solve constrained optimization problems.

The problems addressed in this thesis

In this work we propose and study the convergence of a shooting algorithm for the
numerical solution of optimal control problems governed by equations of the form

ẋ(t) = f0(x(t), u(t)) +
m

∑
i=1

vi(t) fi(x(t), u(t)), a.e. on [0, T]. (1)

Note that when m = 0 then a nonlinear control system arises and when the fi’s do
not depend on u, for all i = 0, . . . , m, then the resulting system is (totally) control-
affine. In this thesis, however, we are particularly interested in the case where both
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types of control appear. This study is motivated by many models that appear in
practice and the system is then partially control-affine. Among them we can cite the
followings: the Goddard’s problem proposed in [23] and analyzed in Bonnans et
al. [36], some models for rocket motion studied in Lawden [34], Bell and Jacobson
[9], Goh [24, 25], Oberle [44], Azimov [6] and Hull [32], an optimal hydrothermal
electricity production problem investigated in Bortolossi et al. [14], a problem of
atmospheric flight considered by Oberle in [42], and an optimal production process
in Cho et al. [17] and Maurer et al. [38].

For optimal control problems subject to the dynamics (1), with endpoint cost
and constraints, and with control constraints, we propose a shooting algorithm and
show that its local convergence is guaranteed if second order sufficient optimality
conditions proved in Aronna [3] hold. These second order conditions are written in
terms of the second derivative of the Lagrangian function associated to the optimal
control problem and are an extension of the conditions proved in Dmitruk [18] for
control-affine systems. It is worth mentioning that these conditions rely on Goh
transform [26]. More details, references and timeline for second order conditions for
partially control-affine and control-affine problems can be found in Aronna [3] and
Aronna et al. [4], respectively.

Shooting-like methods applied to the numerical solution of partially control-
affine problems can be found in the literature. See, for instance, Oberle [43, 42] and
Oberle-Taubert [45], where a generalization of the algorithm proposed by Maurer
[37] for (totally) affine systems is given. These works present practical implemen-
tations of shooting-like algorithms, but they do not deal with the problem of its
convergence through optimality conditions.

The organization of this thesis

This theses is organized as follows.

• Chapter I focuses on introducing the main concepts from optimal control that
will be discussed along the thesis. In Section I.1 we start with motivating ex-
amples that lead to the general formulation of partially affine problems. Sec-
tion I.2 is dedicated to formalize the previous discussion, giving the general
problem that will be addressed and presenting a general form of the Pontrya-
gin’s Maximum Principle. We chose the chapter in Section I.3 with a general
discussion some of the numerical methods found in the literature.

• Chapter II is dedicated to the optimality conditions that will be used to prove
the convergence of our shooting algorithm. Section II.1 starts with the PMP in
the control unconstrained case and contextualizes the assumptions we make
throughout the thesis. In Section II.2 we specify the different approaches found
in the literature to obtain the optimal controls as a function of the states and
costates, yielding a differential algebraic system of equations as a consequence
of Pontryagin’s Maximum Principle. Section II.3 continues the discussion around
optimality conditions, exploring second order necessary and sufficient condi-
tions that are used in the proof of convergence for our algorithm.

• In Chapter III we formally introduce the algorithm in Section III.1, and prove
its convergence in the control unconstrained case in Section III.2. Afterwards,
the convergence results are extended to the controls constrained case in Section
III.3.
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• The goal of Chapter IV is to give a detailed discussion of the implementa-
tion of our algorithm. In Section IV.1 we discuss how symbolic computa-
tions were employed to automate the analytic calculations necessary before
the more computationally demanding steps. Afterwards, in Section IV.2 we
discuss some less trivial examples, one where we are able to verify sufficient
conditions of optimality and later apply our numerical scheme and another
example coming from the epidemiology literature.

Notations. Throughout the text we shall omit the arguments of some function h
whenever the context is clear, e.g. the time dependence is frequently omitted. When
it is a function of time and some other variable h = h(t, x), the time derivative is
frequently referred as ḣ. For other variables partial derivatives are referred as Dxh
or even hx. The same convention is adopted for higher derivatives. By Rk we de-
note the k-dimensional real space, the space of k-dimensional column vectors with
the usual euclidean norm; and by Rk,∗ its dual space, consisting of k-dimensional
row vectors and B denotes the corresponding unitary ball centered at zero. By
Lp([0, T]; Rk) we mean the Lebesgue space with domain being the interval [0, T] and
taking values in Rk; while Wq,s([0, T]; Rk) denotes the Sobolev spaces.
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I
Optimal Control: the Pontryagin’s
Maximum Principle and numerics

I.1 Motivating Examples

Optimal control of ordinary differential equations (ODE) is no more than optimization
problems such that the constraints include ODEs. Even thought we can not solve
the ODE analytically, we can still obtain enough information concerning the optimal
solution if we learn to deal with these new types of constraints.

In order to do this, we introduce the costates, or adjoint variables, p(·). This newly
introduced variables assume the role of multipliers corresponding to the ODE con-
straints. Considering a general control system of the form

ẋ(t) = f (x(t), u(t)), u(t) ∈ Uad,

these new costate variables satisfy the adjoint dynamics given by

− ṗ = p · Dx f (x, u). (I.1)

The advantage of introducing these variables is that we can derive necessary
conditions of optimality that will enable us to find expressions for the optimal con-
trols in terms of the states and costates. In this Section we will not discuss these
conditions formally, this is left for Section I.2. Our goal here is to give a collection
of examples and discuss the different kinds of behavior that optimal solutions can
present. All of the examples discussed on this thesis can be found on the link.

We start with the simplest case, where the controls appear non linearly and with-
out constraints.

Example 1.

minimize
1
2

∫ 12

0

(
(x(t)− 10)2 + u(t)2) dt

subject to ẋ(t) = u(t)− 5 sin(t), 0 ≤ t ≤ 12,
x(0) = 5.

(I.2)

Defining the adjoint variable p satisfying the variational system− ṗ = p ·Dx f (x, u),
we will see that it is easy to verify that the optimal control for this problem satisfies
the simple analytical expression.

u∗ = −p.

The optimal solution can be found on Figure I.1.

https://github.com/jmmachado/The-Shooting-Algorithm-for-Partially-Affine-Control
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FIGURE I.1: Optimal trajectories for Example (1).

Indeed this type of systems, with controls appearing quadratically in the dynam-
ics or in the cost function, usually are the easiest to solve. In fact it is fairly common
to obtain such analytic expression for problems in this category.

In the sequel, we investigate a problem where the controls appear linearly.

Example 2.

minimize r · N(T) +
1
2

∫ T

0
(q · N(t) + su(t)) dt

subject to
(

Ṅ1(t)
Ṅ2(t)

)
=

( −a1 2a2
a1 −a2

)(
N1(t)
N2(t)

)
+ u(t)

( −2a2N2(t)
0

)
,

N1(0) = N∗1 , N2(0) = N2∗,
u(t) ∈ [0, umax].

(I.3)

This examples was proposed in [49] to model the effects of drug in a 2-compartment
model for the growth of cancerous cells. The quantities N2 represent the portion of
the cancerous cell population that are in the reproduction stage, through mitosis, each
give birth to two active cells that enter compartment N1. A drug, whose dosage is
represent by the control u, only affects the population of active cells N1. The problem
in controlling this system is the limit of the total amount of drug that the patient can
be exposed to during the course of her/his treatment. For this reason, we introduce
a maximum dosage constraint u ≤ umax, but also include an integral term depend-
ing on the control in the cost function. This is meant to minimize long term damage
to the exposition to the drug and the cost associated to the treatment.

As in example 1, defining the adjoint variables is key to characterize the optimal
controls. In this example, the adjoint system becomes

− ṗ = p ·
( −a1 2a2

a1 −a2

)
+ q, p(T) = r,

and the optimal controls assume the form

u∗ =
{

umax, s− 2a2 p1 < 0,
0, s− 2a2 p1 > 0,
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what we call bang-bang controls, since they switch from their maximum and mini-
mum values. This switching behavior can be observed in Figure I.2. Note that we
have not specified what values the controls assume when s− 2a2 p1 = 0. In fact, in
[50] it was proven that this model only presents bang-bang solutions, hence this case
does not play a role here.
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FIGURE I.2: Optimal trajectories for Example (2).

This however is not the case in our next example, known as the singular linear
quadratic regulator, see [39].

Example 3.

minimize
1
2

∫ 5

0

(
x1(t)2 + x2(t)2) dt

subject to ẋ1(t) = x2(t), x1(0) = 0,
ẋ2(t) = v(t), x2(0) = 1,
v(t) ∈ [−1, 1].

(I.4)

This example is a degenerate case of the linear quadratic regulator (LQR), common
in the engineering literature. The difference is in the running cost function, in the
LQR there should appear a term deepening on v2, or more generally, a quadratic
form vTQv, where Q ∈ Rm×m is non singular. This time, the optimal controls assume
the form

v∗(t) =


1, p2(t) < 0,

x1(t), p2(t) = 0,
−1, p2(t) > 0.
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When p2 = 0 in a time interval with positive measure, we say that the controls
present a singular arc. The computations leading to this characterization are less
trivial when comparing to the bang-bang case. Moreover, is not easy to determine a
priori when such bang-singular structure appears. In Figure I.3 we see an example of
this behavior.
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FIGURE I.3: Optimal trajectories for Example (3).

Our final example is the case when we have the presence of controls appearing
both linearly and non linearly in the dynamics, what we call the partially-affine case.

Example 4.

minimize −2x2(2) +
∫ 2

0

(
x1(t)2 + x2(t)2 + u(t)2 + 10x2(t)v(t)

)
dt

subject to ẋ1(t) = x2(t) + u(t), x1(0) = 0,
ẋ2(t) = v(t), x2(0) = 0,
v(t) ∈ [0, 0.5], x1(2) = 1.

(I.5)

In Figure I.4, the behavior of the controls is similar to what we have observed in
the previous examples; the nonlinear controls appear to be smooth, while the linear
controls present the bang-singular structure observed in Example 3.

I.2 The Pontryagin’s Maximum Principle

After the bestiary of motivating examples we have given in Section I.1, we intend to
formulate a framework which encompasses all the previous examples. Consider the
following general problem

minimize φ(x(0), x(T)) [cost function]

subject to: ẋ(t) = f0(x(t), u(t)) +
m

∑
i=1

vi(t) fi(x(t), u(t)) [dynamics]

ηj(x(0), x(T)) = 0, j = 1, . . . , dη , [equality end point constraints]
φi(x(0), x(T)) ≤ 0, i = 1, . . . , dφ, [inequality end point constraints]
u(t) ∈ Uad, [nonlinear control constraints]
ai ≤ vi(t) ≤ bi. [linear control constraints]

(OC)
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FIGURE I.4: Optimal trajectories for Example (4).

The main point of interest that we have stressed out in the examples given was
concerning the type of dependence the controls presented. Notice however that
problem (OC) generalizes all the such examples into this same model, that we will
call partially affine.

If the problem at hand has only controls appearing nonlinearly, we take the vec-
tor fields fi = 0; remaining only f0(x, u). On the other hand, if all the controls appear
linearly, it will correspond to the case where the vector fields f0, f1, . . . , fm depend
only on x.

The main motivation to make this distinction is in the techniques required to find
analytical expressions for the optimal controls. This will be addressed in Section
II.2. For the time being, for the sake of clarity of exposition, we shall assume enough
regularity for all the data functions as we conduct our computations. In Chapter II
we shall formalize all the assumptions made throughout this thesis.

There are two main approaches for solving (OC), the Pontryagin’s Maximum Prin-
ciple (PMP) and Bellman’s Dynamic Programming Principle. The former is a first order
necessary condition for the optimality of a feasible state-control tuple (x̂, û, v̂) that
resembles the Lagrange multiplier rule from continuous optimization. The latter is a
technique to derive a Hamilton-Jacobi equation, that is a partial differential equation
to be satisfied by the value function associated to the problem. We will not detail this
second approach any further, but the interested reader can check the monograph
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[7]. In this work we focus on techniques derived from the PMP. For a proof of the
Pontrygin’s Principle we refer the reader to the original work from Pontryagin [48]
or the more recent monographs [49, 53].

To state the PMP we will need to define some important functionals.

(i) The non-minimized Hamiltonian function

H(x, u, v, p) := p ·
(

f0(x, u) +
m

∑
i=1

vi fi, (x, u)

)
; (I.6)

(ii) The end-point lagrangian

`(x0, xT, α0, α, β) := α0φ(x0, xT) +
dφ

∑
i=1

αiφi(x0, xT) +
dη

∑
j=1

β jηj(x0, xT); (I.7)

as well as specify the notion of optimality that will be used.

Definition I.2.1 (Weak minimum). A feasible trajectory ŵ = (x̂, û, v̂) ∈ W is said to
be a weak minimum of problem (OC) if, for some real ε > 0, it is optimal in the set of
feasible trajectories w = (x, u, v) that satisfy

‖x− x̂‖∞ + ‖u− û‖∞ + ‖v− v̂‖∞ < ε.

For the reminder of this thesis we shall fix a nominal feasible trajectory ŵ =
(x̂, û, v̂) for which optimality conditions will be given and, whenever the arguments
of a function are omitted, we mean that it is evaluated at such trajectory. In the
sequel we state the PMP.

Theorem I.2.1. Assume that f and φ are C1 functions, the set of admissible controls Uad
is a closed subset of Rl and let (x̂, û, v̂) be a weak local minimizer for problem (OC). Then
there exists a function p : [0, T] → Rn,∗, multipliers α ∈ R

dη

+ , β ∈ Rdη and α0 ∈ {0, 1}
satisfying the conditions:

(i) the nontriviality condition

(α0, α, β, p(·)) 6= 0; (I.8)

(ii) the complementarity condition

αiφi(x̂(0), x̂(T)) = 0, for i = 1 . . . , dφ; (I.9)

(iii) the transversality conditions

(−p(0), p(T)) = ∇x0,xT`(x̂(0), x̂(T), α0, α, β); (I.10)

(iv) the costate dynamics

− ṗ = Dx H(x̂, û, v̂, p), a.e. on [0, T]; (I.11)
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(v) the minimization of the Hamiltonian condition

(û(t), v̂(t)) = argmin
u ∈ Uad

vi ∈ [ai, bi]

H(x̂(t), u, v, p(t)), a.e. on [0, T]. (I.12)

A tuple (x̂, û, v̂, p, α0, α, β) that satisfies the conditions (I.8)-(I.12) from the (PMP),
is called an extremal. In addition, when α0 > 0, the extremal is called normal. The
case when α0 = 0, the extremal being called abnormal, is pathological because the
minimization of the cost becomes irrelevant, since in this case it gives no contribu-
tion to the transversality conditions. In this work we shall consider only problems
that admit normal extremals.

Now let us comment on each of the conditions specified on Theorem I.2.1.

1. Non triviality: Notice that conditions (ii) − (iv) are trivially satisfied if we
allow the tuple (α0, α, β, p(·)) to be null. Therefore, the nontriviality condition
states that there is at least one more set of multipliers that satisfy the optimality
conditions, other than the trivial solution. Furthermore, for normal extremals,
we can always assume α0 = 1 once we normalize the set of multipliers.

2. Complementarity: The complementarity condition plays a similar role as in
the KKT theory for continuous optimization. The indexes i such that φi(x(0), x(T)) =
0 are called active, that is, the inequality constraints that actively influence in
the local optimality of a trajectory. The inactive indexes, the ones such that
φi(x(0), x(T)) < 0, do not influence in the local optimality since we can find
a neighborhood of the optimal trajectory x̂ where these constraints remain in-
active, hence the local analysis remains unchanged, up to a shrinkage of the
neighborhood we state that x̂ is optimal. A direct consequence then is that for
an inactive index i, one must have αi = 0.

3. Minimization of the Hamiltonian: The minimization of the Hamiltonian con-
dition is our primary resource to compute the optimal controls. One viable
strategy is to try to solve the minimization in (I.12) with the variables x, p as
parameters. If we are able to obtain the minimizing controls for this problem
analytically, we get a representation of the controls as a function of the states
and costates. When the nonlinear controls are unconstrained, i.e. Uad = Rl ,
or the set Uad is open, the minimization w.r.t. u becomes the stationarity of the
Hamiltonian

Hu(x̂(t), û(t), v̂(t), p(t)) = 0,

provided that the Hamiltonian is differentiable. Hence obtaining the nonlinear
controls reduces to solving a nonlinear system of equations, under appropriate
hypotheses that will be discussed in Section II.2. When this nonlinear depen-
dence is quadratic, as in Examples 1 and 4, this representation is easy to obtain.

The linear controls can be trickier to characterize. Notice that the Hamiltonian
can be rewritten as

H = p · f0 +
m

∑
i=1

vi Hvi ,

hence in order to minimize the Hamiltonian with respect to the control vi, it
suffices to minimize the quantity vi Hvi = vi p · fi. When Hvi < 0, the minimum
is attained at the maximum value admissible for vi; if Hvi > 0, the minimum is
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achieved at the minimum value admissible for vi. So the optimal controls will
assume the form

v̂i(t) =


bi, Hvi(t) < 0,
?, Hvi(t) = 0,
ai, Hvi(t) > 0,

as we have observed in Example 2.

For this reason Hv is many times called the switching function, for it charac-
terizes the times when the linear controls switch from their saturation values.
However, the reader should have noticed that when the switching function be-
comes null, the controls are not specified by this method. We will discuss in
Section III.3 that when Hvi = 0 inside an interval of positive measure, the con-
trol vi is said to be singular, or to present a singular arc. The way to circumvent
this issue is to take time derivatives of the switching function until the depen-
dence on the controls becomes explicit, and then solve a linear system. More
details on such procedures will be addressed in Section II.2.

4. Costate dynamics: We have discussed that the costate variables are viewed as
the Lagrange multipliers concerning the ODE constraints. On the other hand,
the costate dynamics are the reason the Hamiltonian function gains its name.
Notice that the pair of state and costate variables satisfy Hamiltonian dynamics,

ẋ =
∂H
∂p

, ṗ = −∂H
∂x

,

very celebrated in the physics literature, [1]. This is also reminiscent of the
roots of optimal control theory in the calculus of variations. The latter is to this
date an extremely fruitful area of mathematics, but that was initially conceived
as a tool for solving problems coming from classical mechanics, [52].

Take a general control system of the form

ẋ = f (x, u),

its corresponding linearized dynamics of the form

˙̄x = Dx f (x, u)x̄ + Du f (x, u)ū

has the property of transporting tangent vectors of the reachable set of the
control system, [15, 49] with a careful choice of control variations ū.

This property is fundamental in the proof of the PMP since we can generate
tangent vectors at some arbitrary time τ inside the time horizon [0, T] by means
of specially crafted variations of the controls and transport them with the lin-
earized dynamics into tangent vectors to the reachable set at the final time. In
the original work of Pontryagin and his group, these were given the name of
needle variations, [48, 15]. Many other types of special variations came after-
words, see e.g. [49] and the references therein.

5. Transversality: Perhaps the transvesality conditions are the most subtle ones.
To keep the discussion simpler, we will address the case with constraints only
on the final time. Once we have constructed the cone of tangent vectors to the
reachable set, that we will call Γ, checking the local optimility of a trajectory
x̂ reduces to checking if any of those tanget directions, v ∈ Γ, is such that
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x̂(T) + εv does not attains a smaller cost and keeps feasibility, in the sense of
end-point constraints.

This is equivalent to saying that no direction v ∈ Γ is in the tangent cone to the
set x ∈ Rn :

φ(x) ≤ φ(x̂(T)),
φi(x) ≤ 0, for i = 1, · · · , dφ

ηj(x) = 0, for j = 1, · · · , dη

 ,

which could be called the set of profitable directions. Under sufficient regular-
ity conditions, or qualification conditions in the terminology of continuous opti-
mization, the tangent cone at the point x̂(T) can be written as

T =

v ∈ Rn :
∇φ(x̂(T)) · v ≤ 0,
∇φi(x̂(T)) · v ≤ 0, for i = 1, · · · , dφ

∇ηj(x̂(T)) · v = 0, for j = 1, · · · , dη

 .

This way, the essential element of the PMP becomes a theorem of separation
of convex cones, in the sense that we need to separate the cones Γ and T with
a hyperplane. Or equivalently, to finding a vector p(T), which depends on the
final time by our construction, that satisfies

p(T) · v ≤ 0, for all v ∈ Γ, (I.13)
p(T) · v ≥ 0, for all v ∈ T. (I.14)

Meaning, p(T) is in the normal cone to the set of profitable directions.1 Under
the same qualification conditions, one can prove that the normal cone assumes
the form

N =

α0∇φ(x̂(T)) +
dφ

∑
i=1

αi∇φi(x̂(T)) +
dη

∑
j=1

β j∇ηj(x̂(T)) :
α0 ≥ 0,

α ∈ R
dφ

+ ,
β ∈ Rdη

 ,

recovering the transversality conditions as stated.

To achieve the separation of the reachable set itself from the set of feasible
directions, we need a cone with special properties that carries the informa-
tion about the frontier of the reachable set, distinguishing its interior from the
boundary points, points that will admit a supporting hyperplane. This is the
motivation behind the definition of the Boltyansky’s approximating cone, see the
original work [48] or the discussion in [49]. After this construction, the PMP
follows from classical separation theorems for convex sets.

Finally we point out that the transversality conditions state that the final costate
value is a separating hyperplane for the tangent cone to the set of profitable di-
rections and the approximating cone to the reachable set. This separation need
not be unique, hence in general we can expect a set of multipliers instead of a
single one.

1The normal cone is defined as the polar cone of the tangent cone, that is N = T4, where the polar
of a set K is defined as

K4 := {v : v · y ≥ 0, for all y ∈ K.}
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I.3 Numerical Methods

I.3.1 First Direct Approach

The problems in the form of (OC) can be regarded as optimization problems in func-
tional spaces. It is possible to extend the classical KKT theory to functional spaces,
however for the development suitable numerical algorithms it is necessary to dis-
cretize the domain over which our functions are defined. Hence, a first approach
to solving these problems numerically would be to propose a discretization for the
ODE and solve the finite dimensional non linear program (NLP) associated to it. This
is called a Direct Method since it follows the philosophy of first discretize, then opti-
mize.

We discretize our ODE with a general, possibly implicit, s-stage Runge-Kutta
(RK) method as done in [28, 11]. For standard references on the RK methods we
refer to [29, 54]. The associated NLP becomes

minimize
x0,(xk),(xki),(uki)

φ(x0, xN)

subject to: xk+1 = xk + hk

s

∑
i=1

bi f (xki, uki) , k = 0, . . . , N − 1

xki = xk + hk

s

∑
i=1

aij f
(
xkj, ukj

)
,

k = 0, . . . , N − 1
i = 1, . . . , s

x0 = x0,
η(x0, xN) = 0.

(NLP)

Here we are considering autonomous dynamics, the discretization for non au-
tonomous follows in the exact same way and only adds complexity to our notation.
The variables xki and uki correspond to the values of states and controls at times
tk + cihk.

It will facilitate our calculations to introduce the quantities Kki = f (xki, uki). Not-
ing that Kki = f

(
xk + hk ∑s

j=1 aijKkj, uki

)
, the previous system can be rewritten as

minimize
x0,(xk),(Kki),(uki)

φ(x0, xN)

subject to: xk+1 = xk + hk

s

∑
i=1

biKki, k = 0, . . . , N − 1

Kki = f

(
xk + hk

s

∑
i=1

aijKkj, ukj

)
,

k = 0, . . . , N − 1
i = 1, . . . , s

x0 = x0,
η(x0, xN) = 0.

(I.15)

Hence we are in a standard optimization setting and assuming some qualification
conditions upon the constraints we have that local minima of problem (I.15) shall
satisfy the KKT conditions [10, 41]. We define the lagrangian function for this problem
as follows

LNLP = β0φ(x0, xN) + p0 · (x0 − x0) +
N−1

∑
k=0

{
pk+1 ·

(
hk

s

∑
i=1

biKki + xk − xk+1

)
+

s

∑
i=1

ψki ·
(

f (xk + hk

s

∑
`=1

ai`Kk`, uki)− Kki

)}
+ β · η(x0, xN),

(I.16)



I.3. Numerical Methods 15

where the pk+1 are the multipliers referring to the equality constraints coming from
the RK update for the discretized state xk+1; ψki refers to the equality constraints
referent to the definition of Kki and β is the multiplier associated to the end point
constraints of the original problem. Under qualification assumptions, the KKT sys-
tem that describes a minima for the discretized problem assumes the form

∂LNLP

∂Kki
= −ψki +

s

∑
j=1

ajiψkj · Dx f

(
xk + hk +

s

∑
`=1

ai`Kk`, ukj

)
+ hkbi pk+1 = 0 (I.17)

∂LNLP

∂xk
=

s

∑
j=1

ψkj · Dx f

(
xk + hk +

s

∑
`=1

ai`Kk`, ukj

)
+ pk+1 − pk = 0 (I.18)

∂LNLP

∂uki
= 0 (I.19)

Solving equation (I.17) for pk+1, substituting into equation (I.18) and, provided
that all the coefficients bi are strictly positive, defining the quantities pki = ψki/bihk
we obtain the update scheme for thex multipliers pk

pk+1 = pk − hk

s

∑
i=1

bi pki · Dx f (xki, uki),

pki = pk − hk

s

∑
j=1

âij pkj · Dx f (xkj, ukj),
for k = 1, ..., N − 1, (I.20)

where the new coefficients are defined as âij := bj − bj
bi

aji.
This update equation for the costates is nothing more than a Runge-Kutta dis-

cretization of the costate dynamics obtained from the PMP. Note however that the
Runge-Kutta coefficients (âij, bj) may not coincide with the coefficients used in the
original Runge-Kutta discretization of the state dynamics.

Taking partial derivatives with respect to x0, xN , we obtain

pN = β0DxT φ(x0, xN) + β · DxN η(x0, xN),
−p0 = β0Dx0 φ(x0, xN) + β · Dx0 η(x0, xN),

(I.21)

which is a discretized version of the transversality conditions of the PMP.
Finally, with (I.19), we obtain the discretized version of the stationarity of the

Hamiltonian
Hu(xki, uki, pki) = 0, (I.22)

note however that for simplicity of the exposition we have opted to avoid control
constraints. Gathering all equations from this KKT system, we conclude that solv-
ing the discrete optimal control problem reduces to solving the following Discretized
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Optimality System (DOS):

xk+1 = xk + hk

s

∑
i=1

bi f (xki, uki) ,

xki = xk + hk

s

∑
i=1

aij f
(
xkj, ukj

)
,

pk+1 = pk − hk

s

∑
i=1

bi pki · Dx f (xki, uki),

pki = pk − hk

s

∑
j=1

âij pkj · Dx f (xkj, ukj),

x0 = x0, Hu(xki, uki, pki) = 0,

pN = β0DxT φ(x0, xN) + β · DxN η(x0, xN),

−p0 = β0Dx0 φ(x0, xN) + β · Dx0 η(x0, xN).

(DOS)

This analysis shows that in order to integrate the coupled dynamics of (x, p),
one should be careful with the discretization method employed. Since the RK-
coefficients for integrating the dynamics of x and p are different, it gives rise to the
concept of Partitioned Runge-Kutta numerical integration methods, we refer to [30]
for further details.

I.3.2 An Indirect Approach

We have explored the strategy of first optimize, then discretize. Now let us try the
converge strategy. Given an optimal control problem, we use first order necessary
conditions for optimality, e.g. the Pontryagin’s Maximum Principle, to write a Two
Point Boundary Value Problem (TPBVP) whose solution coincides, under certain
conditions, with the solution for our original problem. To solve such (TPBVP) we
will require some numerical integration method that will introduce a discretization
scheme, hence the name first optimize, then discretize, or even Indirect Methods.

To exemplify this strategy, we recall our Example 1.

minimize J(x, u) =
1
2

∫ 12

0

(
(x(t)− 10)2 + u(t)2)dt

subject to ẋ(t) = u(t)− 5 sin(t), 0 ≤ t ≤ 12,
x(0) = 5.

(I.23)

Before going into further details of indirect methods, we need to rewrite this
problem in a autonomous form and without the running cost, in order to apply the
PMP as it was stated. This is easily done introducing the variables x1, x2, such that

ẋ1 = 1, x1(0) = 0,

ẋ2 =
1
2
(
(x(t)− 10)2 + u(t)2) , x2(0) = 0.
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This way, problem (I.23) becomes

minimize x2(12)

subject to

 ẋ
ẋ1
ẋ2

 =

 u− sin(x1)
1

1
2

(
(x(t)− 10)2 + u(t)2) ,

 0 ≤ t ≤ 12,

x(0) = 5, x1(0) = x2(0) = 0.

(I.24)

The PMP for this new problem yields the following boundary value problem.

 ẋ
ẋ1
ẋ2

 =

 u− sin(x1)
1

1
2

(
(x(t)− 10)2 + u(t)2) ,


 ṗ

ṗ1
ṗ2

 =

 p2 (−x + 10)
5p1 cos(x1)

0
,


u = − p

p2
, (x(0), x1(0), x2(0)) = (5, 0, 0)

(p(12), p1(12), p2(12)) = (0, 0, 1)

(I.25)

Some simplifications to problem (I.25) are in place. First, note that the variable
p2 has null dynamics therefore it remains constant, p2(t) = 1 for all 0 ≤ t ≤ 12, in
virtue of the transversality condition p2(12) = 1. Second, since we have constraints
in the control, the minimization of the Hamiltonian condition becomes Hu = 0, also
called the stationarity of the Hamiltonian. Hence we obtain u = −p by means of a
simple algebraic equation. Substituting this expression in the dynamics, our ODE
depends only on (x, p).

Therefore, the difficulty os solving this problem lies in the boundary condition.
Since the stationarity gives information only for the final values of the costates, we
have no standard way to integrate this system directly. Fortunately, this problem is
well known in the numerical analysis literature. One of the standard ways to solving
it is by means of a shooting algorithm.

This class of algorithms are suitable to solving general differential-algebraic systems
of equations (DAE), that is differential equations coupled with algebraic conditions.
This is done defining a suitable function, taking the initial values (p(0), p1(0), p2(0))
as arguments, integrating the dynamics with these corresponding initial conditions,
obtaining the values of (x(12), x1(12), x2(12), p(12), p1(12), p2(12)). Then, the shoot-
ing function is defined in such a way that the initial and final values of the states and
costates satisfy the algebraic constraints.

For our toy problem (I.25), the initial conditions for the states will always be
satisfied since they are fixed. The variable p2 is a known constant, so we need not
worry about it. Hence, a suitable shooting function can be defined as

(p(0), p1(0)) 7→
(

p(12)
p1(12)

)
. (I.26)

Now, solving (I.25) reduces to finding the roots of the map in (I.26). This can
be done by a number of numerical methods, but we will postpone the details for
Chapter IV, where we present a general form for the shooting function, suitable to
solve a wider class of problems. The solution for problem (I.23) can be found in
Figure I.1
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I.3.3 Comparing Direct and Indirect Methods

Problem (I.23) is fairly simple when compared with other optimal control problems
found in the literature and even to the scope of the problems that will be addressed
in this thesis. The algorithm converged with a tolerance of 10−10 on the norm of the
shooting function, even thought the first guess of the initial values of the costates
was done very poorly, we just arbitrarily set them both to 1. However, this is not
usually the case with shooting methods. Indeed, for more general problems, the
shooting function becomes very sensitive to the initial conditions, in such a manner
that the region of convergence can be very narrow.

This does not make direct methods objectively better. Naturally, in order to ob-
tain a precise solution, one would need to refine the time discretization further and
further, obtaining a humongous optimization problem, specially if the time horizon
of the problem in question is large. Implementing an adaptive step size integra-
tion method is not trivial either, since the time discretization must be known before
hand to formulate the optimization problem and adaptive step integrators compute
the optimal step sizes online. In fact, this is an advantage of indirect methods over
their counterparts. In the beginning of each iteration of a shooting algorithm, all the
necessary information are the states and costates dynamics and the estimate for their
initial conditions that satisfy the PMP. Therefore, the use of adaptive step integrators
is very welcome, many times reducing considerably the computational complexity
of each iteration.

For the aforementioned reasons, an approach that unifies the strengths of both
methods is to obtain a rude estimate for the initial conditions using a direct method
with relatively high error tolerance and refine the solution with a shooting scheme.
The only concern that arises is if the operations of discretize and optimize commute in
the sense that the final optimization problem tackled by the indirect method is the
same as the problem solved by the direct method.

The choice of numerical integrators is crucial for such equivalence between direct
and indirect methods. This choice is a challenging matter by its own, but the previ-
ous analysis from Section I.3.1 shows that when combined with questions of optimal
control, it becomes even more subtle. Using the Partitioned Runge-Kutta scheme de-
scribed makes the problems obtained by first discretizing and then optimizing and
first optimizing and then discretizing equivalent, see Figure I.5.
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Discretize PRK

O
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T

FIGURE I.5: Commutation between Discretization and Optimization
steps.
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So starting with a discretization for the state dynamics referent to a Butcher
tableau (A, b, c), we construct a new tableau for the costate dynamics, denoted by
(Â, b̂, c), where b̂i = bi, (Â)ij = bj − bj

bi
aji.

Fortunately, some methods such as the Gauss collocation methods in Table I.1
are such that the tableau (Â, b̂, c) coincides with the original. This slightly simplifies
the implementation work, since we do not need to distinguish between states and
costates.

TABLE I.1: Gauss method of orders 2 (midpoint rule) and 4.

1
2

1
2

1

1
2 − 1

6

√
3 1

4
1
4 − 1

6

√
3

1
2 +

1
6

√
3 1

2 +
1
6

√
3 1

4
1
2

1
2
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II
Singular and Partially-Affine Problems

II.1 Problem Statement

In Section I.2 we have discussed the general case of the problem (OC) in a rather
general form. In this section we introduce a simplified problem for which we will be
able to prove the convergence of a shooting algorithm. The first simplification is in
the controls, we will assume that the optimal solutions are contained in open subsets
of the euclidean space. Regarding the end-point constraints, we drop the inequality
components. The second simplification is less relevant to the scope we are working
on, since in practice the only inequality constraints that are relevant are the active
ones. Much like in the KKT theory for continuous optimization, we are only inter-
ested the indexes j for which the optimal state trajectory x̂ satisfy φj(x̂(0), x̂(T)) = 0.
Hence using some strategy to obtain as estimate for the solution, e.g. a direct method
as discussed in I.3, we can determine before hand which indexes are active and re-
move inactive constraints from the shooting scheme. We will come back to problems
with control constraints in Section III.3.

Considering the function spaces U := L∞([0, T]; Rl), V := L∞([0, T]; Rm) and
X := W1,∞([0, T]; Rn), we rewrite the optimal control problem (OC) as in the fol-
lowing form

minimize φ(x(0), x(T)) (II.1)
subject to

ẋ(t) = f (x(t), u(t), v(t)), a.e. on [0, T] (II.2)
ηj(x(0), x(T)) = 0, for j = 1, · · · , dη . (II.3)

We let (OC) denote problem (II.1)-(II.3), where φ : R2n → R, ηj : R2n → R, for j =
1, . . . , dη , and the dynamics f : Rn+l+m → Rn is of the form

f (x(t), u(t), v(t)) := f0(x(t), u(t)) +
m

∑
i=1

vi(t) fi(x(t), u(t)). (II.4)

We make the following assumption for the aforementioned functions.

Assumption 1. All data functions f0, f1, · · · , fm, η and φ have Lipschitz continuous sec-
ond derivatives.

A feasible trajectory is a tuple w := (x, u, v) ∈ W := X × U × V that verifies
the state dynamics (II.2) and initial-final constraints (II.3). The costates from the
PMP will be elements from the space X∗ := W1,∞([0, T]; Rn,∗). Given an element
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λ = (β, p) ∈ Rdη ,∗ ×X∗, recall the definition of the pre-Hamiltonian from (I.6)

H[λ](w) := p(t) ·
(

f0(x, u) +
m

∑
i=1

vi fi(x, u)

)
, (II.5)

the initial-final Lagrangian from (I.7)

`[λ](x0, xT) := φ(x0, xT) +
dη

∑
j=1

β jηj(x0, xT), (II.6)

and finally, define the Lagrangian function L[λ] :W → R

L[λ](w(·)) := `[λ](x(0), x(T))

+
∫ T

0
p(t) ·

(
f0(x(t), u(t)) +

m

∑
i=1

vi(t) fi(x(t), u(t))− ẋ(t)

)
dt. (II.7)

In the following analysis, we shall omit the dependence on time whenever conve-
nient, in order to keep notation more readable.

Removing the control constraints, the minimization of the Hamiltonian condi-
tions (I.12) assume the form of stationarity of the Hamiltonian. In our new setting, we
use the following form of the PMP.

Theorem II.1.1 (Pontryagin’s Maximum Principle). If ŵ = (x̂, û, v̂) is a weak minimum
of (OC), then there exists a multiplier λ = (β, p) ∈ Rdη ,∗ × X∗, satisfying the costate
dynamics:

ṗ = −Dx H[λ](ŵ), a.e. on [0, T]; (II.8)

the transversality conditions:

p(0) =− Dx0`[λ](x̂(0), x̂(T)),
p(T) =DxT`[λ](x̂(0), x̂(T)),

(II.9)

and the stationarity of the Hamiltonian

DuH[λ](ŵ) = 0 and DvH[λ](ŵ) = 0, a.e. on [0, T]. (II.10)

An element λ that satisfies the PMP for a trajectory ŵ ∈ W is called a multiplier.
For a solution w, of (OC), we can, in general, expect a set of multipliers, instead of a
single one. This is problematic for the Shooting Algorithm proposed later in this arti-
cle, therefore we make the following assumption which guarantees the uniqueness
of the Lagrange multipliers [48].

Assumption 2. The derivative of the mapping

η̂ : Rn ×U × V → Rdη

(x(0), u, v) 7→ η(x(0), x(T))
(II.11)

is onto. Here the vector x is the state of the system, given the control (u, v) and initial
condition x(0).

This hypothesis shall be assumed without declaration throughout the article. For
now on, let λ̂ := (β̂, p̂) denote the unique multiplier.
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II.2 The Differential-Algebraic System

The Pontryagin Maximum Principle implies that the optimal state x̂ together with
the multiplier p̂ are solutions of a differential-algebraic system of equations (DAE) in-
duced by equations (II.2), (II.3), (II.8), (II.9) and (II.10). The first step is to show that
there exists a representation of the controls as a function of x and p. This can be
achieved by using the stationarity of the Hamiltonian, or some of its consequences,
along with a suitable strengthened version of the Legendre-Clebsch conditions. As a
consequence, using this desired representation becomes equivalent to the algebraic
conditions introduced by the stationarity condition, turning the DAE into a two-point
boundary value problem (TPBVP).

In the following discussion we shall present a strategy to achieve this substitu-
tion of the controls that is a combination of the techniques in the particular cases
when all the controls appear nonlinearly in the dynamics (i.e. for m = 0) and when
the controls are totally affine (i.e. when l = 0). Next we give a brief review for each of
these simpler cases and finally propose a technique for our mixed case.

We can trace a systematic approach that is common to all cases. It consists in
using the stationarity of the Hamiltonian together with a suitable version of the
Legendre-Clebsch condition to write a system of the form

Θ(ξ, α) = 0,
DαΘ(ξ, α) � 0.

(IFTsys)

In this general system, α plays the role of the controls and ξ represents the tuple
(x, p). After such a system with the form of (IFTsys) is assembled the Implicit Func-
tion Theorem (IFT) can be used to find a representation of α in terms of ξ.

Theorem II.2.1 (Implicit Function Theorem). Given Banach spaces X, Y and Z and a Ck

1 mapping Θ : X×Y → Z. Consider (ξ̄, ᾱ) ∈ X×Y such that

Θ(ξ̄, ᾱ) = 0 and DαΘ(ξ̄, ᾱ) is invertible. (II.12)

Then, there exists an open neighborhood V of ξ̄, and some real number γ > 0 and a Ck

mapping ψ : V → Y such that

Θ(ξ, α) = 0, for ξ ∈ V, ‖α− ᾱ‖Y ≤ γ (II.13)

holds if, and only if, α = ψ(ξ).

II.2.1 The totally nonlinear case

When we have no affine controls in the dynamics, to form a system such as (IFTsys)
and satisfy the requirements of the IFT, the following assumption is necessary.

Assumption 3 (Strengthened Legendre-Clebsch condition). The second derivative of
the Hamiltonian function, with respect to the control is positive definite,

Huu[λ](ŵ) � 0.

Under such assumption we obtain

û(t) = U(x̂(t), p̂(t)). (II.14)
1Here Ck in a Banach space is in the sense of Frechet differenciability.
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Remark II.2.2. In fact, the second partial derivative of the Hamiltonian function with
respect to the control being positive semi-definite is a necessary condition for opti-
mality of a trajectory. Therefore, this assumption is a not too strong.

II.2.2 The totally affine case

When the controls appear linearly, we immediately face complications concerning
the strengthened Legendre-Clebsch condition, since the affine dependency of the
controls implies that the matrix Hvv is null and can not be positive definite. This
way, the process for achieving a representation for the optimal control as

v̂(t) = V(x̂(t), p̂(t)) (II.15)

is not so trivial.
The solution for such problem is to turn our analysis to the time derivatives of

Hv, which is usually referred as the switching function. In order to simplify the cal-
culations involved in computing these derivatives, let us consider a general formula
for the time derivative of a product p · F, where F : Rn → Rn is a vector field.

d
dt

( p̂ · F(x̂)) = ˙̂p · F(x̂) + p̂ · DxF(x̂) ˙̂x

= p̂ ·
(

DxF(x̂) f0(x̂)− Dx f0(x̂)F(x̂) +
m

∑
i=1

v̂i (DxF(x̂) fi(x̂)− Dx fi(x̂)F(x̂))

)
.

(II.16)

It is advantageous to introduce the definition of Lie brackets. Given two differen-
tiable vector fields g, h : Rn → Rn the Lie bracket between them is defined as

[g, h] := Dxh(x)g(x)− Dxg(x)h(x). (II.17)

We use the same notation for functions depending on u and v as well, neverthe-
less, the derivatives are always taken w.r.t. x. Using the newly introduced notation,
Equation (II.16) assumes the form

d
dt

( p̂ · F(x̂)) = p̂ · [ f0, F] +
m

∑
i=1

v̂j p̂ · [ fi, F]. (II.18)

We can obtain the first time derivative of Hvi by choosing F = fi so that equation
(II.18) becomes

Ḣvj [λ̂](ŵ) = p̂ · [ f0, f j] +
m

∑
i=1

v̂j p̂ · [ fi, f j]. (II.19)

At this point, we are still not read to retrieve v since, in fact, (II.18) does not depend
explicitly on the linear controls. This is a consequence of the following proposition,
which is a corollary of second order necessary conditions for optimality when the
set of multipliers is a singleton, as it is our case by Assumption 2.

Proposition II.2.3 (Goh conditions). Assume that ŵ(·) is a weak minimum having an
unique multiplier. Then the following identities hold

p̂ · [ fi, f j](·) ≡ 0, for i, j = 1, · · · , m.
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Proposition II.2.3 was proposed and proved by Goh. A generalization that ap-
plies to the framework of the current paper was given by Aronna in [3, Cor. 5.2] (see
also [5] and [21]). It is a direct consequence that the time derivative of the switching
function (II.19) can now be expressed as

Ḣvi [λ̂](ŵ) = p̂ · [ f0, fi], (II.20)

showing explicitly the independence on the controls. Our hope is to turn to the
second time derivative, which can be achieved once again with Equation (II.18), this
time choosing F = [ f0, fi]. We obtain

Ḧvi [λ̂](ŵ) = p̂ · [ f0, [ f0, fi]] +
m

∑
j=1

v̂j p̂ ·
[

f j, [ f0, fi]
]

. (II.21)

Remark II.2.4. One could easily be misled into thinking that the control shall appear
explicitly in equation (II.21), as was the case with the first derivative. This is not
necessarily the case, in fact, as was proved by Kelly et al. [33], for each control index
i, the order Mi of the first derivative of the switching function which presents the
control explicitly is even.

Or equivalently, for every k ∈N, the 2k-th time derivative of the switching func-
tion is such that

∂

∂vi

d2k−1

dt2k−1 Hv[λ̂](ŵ) ≡ 0,

assuming the value zero when computed along the optimal trajectories.
The way to proceed is taking as many derivatives as necessary in order to force

the explicit appearance of the linear controls. For simplicity, we shall consider that
such task is achieved with only two derivatives. From the stationarity of the Hamil-
tonian for the linear controls, we have Ḧv[λ](ŵ) = 0. As a consequence, the controls
can be retrieved by means of the IFT, once we assume the following strengthened
generalized Legendre-Clebsch condition.

Assumption 4 (Strengthened Generalized Legendre-Clebsch condition).

−∂Ḧv

∂v
[λ̂](ŵ) � 0.

Once again, as in the totally nonlinear case, the positive semi-definiteness of the
matrix in Assumption 4 is a necessary condition for the optimality of a feasible tra-
jectory. Finally the controls can be retrieved assembling a system such as (IFTsys)
with Θ = −Ḧv[λ̂](ŵ). In the sequence we substitute their expressions in the state
and costate dynamics, again obtaining a TPBVP.

II.2.3 The partially-affine case

In our case of interest, we keep the same strategy as previously, attempting to form
a system such as (IFTsys) in order to derive a feedback representation. The main
difference now will be the appearance of terms depending on ˙̂u and ˙̂v, which can
be overcome with further applications of the IFT. Here, the conventional Legendre-
Clebsch condition assumes the form Huu[λ̂](ŵ) Huv[λ̂](ŵ)

Hvu[λ̂](ŵ) Hvv[λ̂](ŵ)

 � 0. (LC)
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A proof of this can be found in Aronna [3, Corollary 1]. Furthermore, since Hvv[λ](ŵ) =
0, condition (LC) holds if, and only if,

Huu[λ](ŵ) � 0 and Huv[λ](ŵ) ≡ 0. (II.22)

In order to find analogous representations to (II.14) and (II.15), we proceed in
a similar manner. First, note that in the context of mixed controls, Equation (II.18)
assumes the form

d
dt

( p̂ · F(x̂, û)) = p̂ · [ f0, F] +
m

∑
i=1

v̂j p̂ · [ fi, F] + p̂ · DuF ˙̂u. (II.23)

Once again, we obtain Ḣvi by choosing F = fi. Hence, recalling that Hvu ≡ 0 from
(II.22) and the Goh conditions from Proposition II.2.3, we obtain the same expression
as in the totally affine case

Ḣvj [λ̂](ŵ) = p̂ · [ f0, f j]. (II.24)

Differentiating the identify (II.23) once more, this time we chose F = [ f0, fi], and
obtain

Ḧvi = p̂ · [ f0, [ f0, fi]] +
m

∑
j=1

v̂j p̂ ·
[

f j, [ f0, fi]
]
+ p̂ · Du[ f0, fi] ˙̂u. (II.25)

The difference from the previously discussed case is in the appearance of the term
depending on ˙̂u, which initially disables us from applying the IFT. To circumvent
this, we use the stationarity condition for the nonlinear controls, Hu[λ](ŵ) = 0, to
find a representation of ˙̂u in terms of the desired variables, i.e. x, p, u and v. Dif-
ferentiating the stationarity condition formally with respect to time, and assuming
enough regularity, yields

Ḣu[λ](ŵ) = Hux[λ](ŵ) ˙̂x + Hup[λ](ŵ) ˙̂p + Huu[λ](ŵ) ˙̂u = 0. (II.26)

where the term Huv[λ̂]v̇ vanishes because of (II.22). To formalize (II.26), we make the
following assumption on the controls.

Assumption 5 (Regularity of the controls). The nonlinear control û(·) is continuously
differentiable and the linear control v̂(·) is continuous.

This assumption is not restrictive since it follows from the IFT, once we assume
the strengthened generalized Legendre-Clebsch condition, (SLC) below. We do not
require differentiability for v, since the coefficient of v̇ vanishes. Taking Θ = Ḣu, in
virtue of (II.26), system (IFTsys) assumes the form

Ḣu = 0,
Huu � 0,

(II.27)

yielding the following representation of ˙̂u

˙̂u = Γ(û, v̂, x̂, p̂), (II.28)

where Γ is a C1 function.
Equation (II.28) shows that the dependence on ˙̂u can be dropped from (II.25).

Therefore we are in position to formulate a system that can be used to achieve our
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desired representation. Consider the mapping

(w, λ) 7→
 Hu[λ](w)

−Ḧv[λ](w)

 , (II.29)

whose jacobian w.r.t. (u, v) at the extremal (ŵ, λ̂) is

J :=


Huu[λ̂](ŵ) Huv[λ̂](ŵ)

−∂Ḧv

∂u
[λ̂](ŵ) −∂Ḧv

∂v
[λ̂](ŵ)

 . (II.30)

To apply the IFT and retrieve the controls, we assume the following Strengthened
Generalized Legendre-Clebsch condition

Huu[λ̂](ŵ) � 0, −∂Ḧv

∂v
[λ̂](ŵ) � 0. (SLC)

The next theorem discusses that we can write the controls in feedback form and
solving our optimal control problem implies the solution of a TPBVP, which is often
called the optimality system.

Theorem II.2.5. Assume that SLC holds. If ŵ is a weak minimum with associated multi-
plier λ̂, then the optimal controls (û, v̂) admit the feedback form

û = U(x̂, p̂), v̂ = V(x̂, p̂), (II.31)

where U and V are smooth functions of the states and costates.
Furthermore, the extremal (ŵ, λ̂) satisfy the optimality system

ẋ = f (x, U(x, p), V(x, p)), a.e. on [0, T],

ṗ = −p · Dx f (x, U(x, p), V(x, p)), a.e. on [0, T],

ηj(x(0), x(T)) = 0, for j = 1, · · · , dη ,

p(0) = −Dx0`[λ](x(0), x(T)),

p(T) = DxT`[λ](x(0), x(T)),

Hv(x(T), U(x(T), p(T))) = 0,

Ḣv(x(0), U(x(0), p(0))) = 0.

(OS)

Proof. We start with the feedback representation (II.31). From our previous discus-
sion, since Huu � 0, we can remove the dependence of ˙̂u from Ḧv. Note that Huu 0

−∂Ḧv

∂u
−∂Ḧv

∂v

 =

 Huu 0

0 −∂Ḧv

∂v

 I 0
∂Ḧv

∂v

−1
∂Ḧv

∂u
I

 . (II.32)

Recalling that Huv ≡ 0, we conclude that matrix (II.30) is invertible, since the second
matrix in (II.32) is invertible from (SLC) and the third in invertible by inspection.
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Representation (II.31) follows from the IFT.
Moving on to (OS), note that it is derived from the PMP. However the feedback

forms II.31 are equivalent to Hu = Ḧv = 0. To obtain the stationarity of the Hamil-
tonian w.r.t. v, we include the boundary conditions Hv(T) = Ḣv(0) = 0.

We could have chosen any pair of terminal points from Hv(0), Ḣv(0), Hv(T) and
Ḣv(T), including at least one of order zero. This choice will simplify the presentation
of the results that follow.

II.2.4 Computing the Linear Controls

To solve (OS), we need explicit expressions for the controls. The nonlinear controls
usually can be obtained from the stationarity of the Hamiltonian, we aim to provide
a practical strategy to obtain the linear controls by writing the set of equations (II.25)
as a linear system. Our concern is whether the term ˙̂u introduces dependencies
on the linear controls. We start assuming that the representation û = U(x̂, p̂) was
already obtained.

In the sequel we introduce the Poisson bracket notation. Given two functions g, h
that depend on x, p, the Poisson bracket is given by

{g, h} := DxgDph− DpgDxh =
n

∑
i=1

(
∂g
∂xi

∂h
∂pi
− ∂g

∂pi

∂h
∂xi

)
(II.33)

The following proposition is a direct consequence of this definition.

Proposition II.2.6. Let F = F(x, p, t) be a C1 function. Then the following identity holds

d
dt

F(x, p, t) = {F, H}+ ∂F
∂t

, (II.34)

provided that the variables (x, p) follow Hamiltonian dynamics, i.e.

ẋ = Hp, − ṗ = Hx. (II.35)

As a consequence of Proposition II.2.6, if the optimal control û admits a feedback
representation û = U(x, p), then

˙̂u = {U, H} = {U, p · f0}+
m

∑
j=1

v̂j{U, p · f j}. (II.36)

By substituting (II.36) in equation (II.25), we obtain

Ḧvi = γi0 +
m

∑
j=1

v̂jγij = 0,

where γij := p̂ ·
(
[ f j, [ f0, fi]] + Du[ f0, fi]{U, p̂ · f j}

)
,

(II.37)

for i, j = 1, . . . , m.

II.3 Second Order Optimality Conditions

Aiming for a proof of convergence for the shooting algorithm, we shall make use
of second order optimality conditions. The goal of our present work is not to make
an extensive study, but to briefly review the results given in Aronna [3] which are
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relevant to our case of interest. However, there are practical benefits in following
the arguments in a more general framework, where the Lagrange multipliers are not
unique. The results given in this more general setting, when taken in the particular
case where the set of multipliers is a singleton, imply the well-known Legendre-
Clebsch and Goh conditions stated in Proposition II.2.3.

The optimality conditions to be presented will be in terms of the quadratic form

Ω[λ](w̄) :=D2`[λ](x̄(0), x̄(T))2 +
∫ T

0

(
x̄T Hxx x̄

+ūT Huuū + 2x̄T Huxū + 2x̄T Hvxv̄ + 2v̄T Huvū
)

dt,
(II.38)

or some transformed version of this functional. A well-known result around such
quadratic form, obtained by means of a second order Taylor expansion, is that

D2L[λ](w̄)2 = Ω[λ](w̄), (II.39)

where the derivatives are evaluated in the nominal trajectories.
We are interested in a set of critical directions for which we can extract second

order conditions of optimality. Such set of directions is called the critical cone and can
be viewed as the set of directions coming from the linearization of the DAE given by
Equations (II.2),(II.3).

First let us introduce the notion of linearization of a system. A general differential-
algebraic control system can be written as

ξ̇(t) = F (ξ(t), α(t)),
0 = G(ξ(t), α(t)),
0 = I(ξ(0), ξ(T)),

(II.40)

where F : Rn ×Rm → Rn,G : Rn ×Rm → RdG and I : Rn ×Rn → RdI are C1

functions. The functions ξ(·) and α(·) represent the state and control input of this
general system. Consider w̃ = (ξ̃, α̃) a solution of problem (II.40), then the linearized
system (II.40) at w̃ is given by the DAE

˙̄ξ(t) = DξF (w̃)ξ̄ + DαF (w̃)ᾱ,
0 = DξG(w̃)ξ̄ + DαG(w̃)ᾱ,

0 = Dξ0I
(
ξ̃(0), ξ̃(T)

)
ξ̄(0) + DξTI

(
ξ̃(0), ξ̃(T)

)
ξ̄(T).

(II.41)

Following (II.41), the linearization of the system (II.2), (II.3) is given by

˙̄x = Dx f (w)x̄ + Du f (w)ū + Dv f (w)v̄, (II.42)
0 = Dη(x̂(0), x̂(T))(x̄(0), x̄(T)). (II.43)

Notice that it does not contains a running constraint, the term represented by the
function G, since we did not include such type of constraints in problem OC. How-
ever this more general case will still be relevant to us in the linearization of the DAE
obtained from the PMP, for this type of running algebraic conditions appears in the
form of the stationarity of the Hamiltonian, (II.10). This way, the critical cone is
defined as

C := {w̄ ∈ W : (II.42) and (II.43) hold} . (II.44)

Since we are interested in the second variation of the trajectories, it will be of use to
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consider perturbations of the controls and states in L2, instead of only in L∞, as we
have formulated so far. We can continously extend the quadratic mapping defined
above to the function spaceW2 := X2 ×U2 × V2, where

X2 := W1,2([0, T]; Rn),
U2 := L2([0, T]; Rl),
V2 := L2([0, T]; Rm).

(II.45)

Therefore we can also extend the critical cone defined in (II.44) to the L2 function
spaces in (II.45) giving

C2 := {w̄ ∈ W2 : (II.42)− (II.43) hold}
C := C2 ∩W ,

(II.46)

hence C ⊂ C2 and the inclusion is dense, [18].
The difficulty in obtaining sufficient conditions is in the fact that the second vari-

ation w.r.t. the linear controls vanish. Hence Ω does not have a quadratic term in v̄
so that coercivity conditions w.r.t. (ū, v̄) cannot hold.

II.3.1 Second Order Necessary Conditions of Optimality

A classical second order necessary condition of optimality is stated in the following
theorem. The reader is referred to Milyutin et al. [40] (or [3]) for a proof.

Theorem II.3.1 (Classical Second Order Necessary Conditions). Suppose ŵ is a weak
minimum of problem (OC), and let Λ be the set of Lagrange multipliers. Then it is necessary
that

max
λ∈Λ

Ω[λ](w̄) ≥ 0, for all w̄ ∈ C. (II.47)

This result can also be strengthened to a wider set of variations as done in [3],
which translates to the following theorem.

Theorem II.3.2. Suppose ŵ is a weak minimum of problem (OC), denote by Λ the set of
admissible Lagrange multipliers. Then it is necessary that

max
λ∈Λ

Ω[λ](w̄) ≥ 0, for all w̄ ∈ C2. (II.48)

Remark II.3.3. As discussed in [3], for the case when the set of multipliers is not a
singleton, the previous Theorems II.47 and II.48 can be extended by restricting the
set of multipliers to a set with more information around the nominal trajectory.

The new second order necessary condition is given as

max
λ∈(coΛ)#

Ω[λ](w̄) ≥ 0, for all w̄ ∈ C2, (II.49)

where coΛ denotes the convex hull of Λ and the set (coΛ)# is defined as

(coΛ)# = {λ ∈ coΛ : Huu[λ] � 0 and Huv[λ] ≡ 0, a.e. on [0, T]}. (II.50)

This strengthening should not be treated merely as a technical result. When the
set of multipliers is a singleton, the condition from (II.49) implies that the set (coΛ)#

is nonempty and in fact coincides with Λ. As a consequence, the Legendre-Clebsch
condition stated in (II.22) follows. Since we assumed the uniqueness of multipliers
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from the beginning, we can omit the term Huv from the quadratic form Ω along weak
minima.

There still remains the necessity of extending such result to sufficient conditions.
This is usually done by strengthening the nonnegativity in the necessary conditions
into a coercivity condition. However, this may become troublesome since the sec-
ond derivative of the Hamiltonian with respect to the linear controls is identically
null, so that the second variation Ω can never be coercive with respect to the linear
controls. In order to overcome this problem, the Goh transform is employed. The
latter is a change of variables introduced by Goh in [26] and applied by him, and
later by several authors to derive second order necessary and sufficient conditions.
We define the Goh transformation as

ȳ(t) :=
∫ t

0
v̄(τ)dτ,

ξ̄(t) := x̄(t)− fv(t)ȳ(t),
for t ∈ [0, T]. (II.51)

One can easily check that the dynamics of the new variable ξ̄(·) is given by

˙̄ξ = fx ξ̄ + fuū + Bȳ, ξ̄(0) = x̄(0), (II.52)

where B := fx fv −
d
dt

fv, (II.53)

and the matrix B is well defined since the nonlinear control u must be differentiable,
as stated in Assumption 5.

We are interested in how the functional Ω and the critical cone are expressed
in terms of the new variables (ξ̄(·), ū(·), ȳ(·)). Starting with the transformed cones,
consider a critical direction w̄ ∈ C, note that x̄(T) = ξ̄(T) + fv(T)ȳ(T) and x̄(0) =
ξ̄(0). Therefore, the initial and final values of the states are not sufficient to character-
ize a critical direction, we also define h̄ := ȳ(T), which appears in the transformation
of the quadratic functional by means of an integration by parts. Equation (III.8) can
be rewritten as

Dηj(x̂(0), x̂(T))
(
ξ̄(0), ξ̄(T) + fv(T)h̄

)
= 0, for j = 1, · · · , dη , (II.54)

so that the critical cones C2 and C are respectively mapped into the sets

P2 :=
{
(ξ̄(·), ū(·), ȳ(·), h̄) ∈ W2 ×Rm : ȳ(0) = 0, ȳ(T) = h̄, (II.52) and (II.54) hold.

}
(II.55)

and
P := P2 ∩W2 ×Rm. (II.56)

As for the second variation of the Lagrangian, the quadratic functional Ω can
also be written in terms of the new variables (ξ̄(·), ū(·), ȳ(·), h̄). For an element
λ ∈ (coΛ)#, that is a multiplier where the terms on Hvu[λ] vanish, the transformed
second variation assumes the form

ΩP [λ](ξ̄, ū, ȳ, h̄) := g[λ](ξ̄(0), ξ̄(T), h̄) +
∫ T

0

(
ξ̄T Hxx[λ]ξ̄ + 2ūT Hux[λ]ξ̄

+2ȳT M[λ]ξ̄ + ūT Huu[λ]ū + 2ȳTE[λ]ū + ȳTR[λ]ȳ + 2v̄TG[λ]ȳ
)

dt,
(II.57)
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where

M := f T
v Hxx − Ḣvx − Hvx fx, E := f T

v HT
ux − Hvx fu, (II.58)

S := 1
2

(
Hvx fv + (Hvx fv)

T
)

, G := 1
2

(
Hvx fv − (Hvx fv)

T
)

, (II.59)

R := f T
v Hxx fv − (HvxB + (HvxB)T)− Ṡ, (II.60)

g[λ](ξ̄0, ξ̄TS, h) := `′′(ξ0, ξT + fv(T)h)2 + hT(2Hvx(T)ξT + S(T)h). (II.61)

For every multiplier λ ∈ (coΛ)#, critical variation (x̄, ū, v̄) and its respective
transformed variables (ξ̄, ū, ȳ, ȳ(T), h̄), one can relate the quadratic functionals Ω
and ΩP through integration by parts, obtaining

Ω[λ](x̄, ū, v̄) = ΩP [λ](ξ̄, ū, v̄, ȳ, ȳ(T), h̄). (II.62)

As a consequence of equation (II.62), Theorem II.3.1 and the equivalence of the criti-
cal cones and the transformed cones, one gets the following inequality as a necessary
condition for optimality of an optimal trajectory:

max
λ∈(coΛ)#

ΩP [λ](ξ̄, ū, v̄, ȳ, ȳ(T)) ≥ 0, on P . (II.63)

However, this result is not so informative since the quadratic form ΩP has the
term 2v̄TG[λ]ȳ, which depends on both the original linear control and the variable
ȳ obtained after Goh’s transform. In order to circumvent such issue, we restrict our
set of multipliers to the subset where such term G[λ] vanishes. Define the set

G(coΛ)# := {λ ∈ (coΛ)# : G[λ] = 0}. (II.64)

The following Theorem gives a further strengthened necessary condition in terms of
this new set of multipliers.

Theorem II.3.4. If ŵ(·) is a weak minimum of problem (OC), then

max
λ∈G(coΛ)#

ΩP [λ](ξ̄, ū, ȳ, ȳ(T)) ≥ 0, on P . (II.65)

Remark II.3.5. Developing the expression of the matrix G, defined in (II.59), one ob-
tains that each element Gij is given by

Gij = −p · [ fi, f j]. (II.66)

With analogous reasoning from Remark II.3.3, whenever the set of multipliers Λ is a
singleton, we conclude that G(coΛ)# is not empty. In fact it is equal to Λ and Gij ≡ 0,
or equivalently the matrix Hvx fv is symmetric. Hence under the Assumption 2, of
uniqueness of multipliers, we recover Goh’s conditions stated in Proposition II.2.3.

As done for Theorems II.3.1 and II.3.2, the new necessary conditions, stated in
terms of the functional ΩP , can also be extended to take variations inW2. As previ-
ously, we note that the unique multiplier is in G(coΛ)#, so that the term G vanishes
and shall be omitted, as the dependence of ΩP with the variations v̄. The extended
quadratic form is denoted as ΩP2 .

ΩP2 [λ](ξ̄, ū, ȳ, h̄) := g[λ](ξ̄(0), ξ̄(T), h̄) +
∫ T

0

(
ξ̄T Hxx[λ]ξ̄ + 2ūT Hux[λ]ξ̄

+2ȳT M[λ]ξ̄ + ūT Huu[λ]ū + 2ȳTE[λ]ū + ȳTR[λ]ȳ
)

dt.
(II.67)
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Finally we state a version of necessary conditions which can be strenghtened to
achieve sufficient conditions through the coerciveness of the quadratic functional.

Theorem II.3.6. If ŵ(·) is a weak minimum of problem (OC), then

max
λ∈G(coΛ)#

ΩP2 [λ](ξ̄, ū, ȳ, ȳ(T)) ≥ 0, on P2. (II.68)

II.3.2 Second Order Sufficient Conditions of Optimality

As discussed above, the sufficient conditions are obtained by strengthening the pos-
itivity of the quadratic functional ΩP2 . We introduce the following γ-order, which
shall be used to state the sufficient conditions

γP (x̄(0), ū, ȳ, h̄) := |x̄(0)|2 + |h̄|2 +
∫ T

0
(|ū(t)|2 + |ȳ(t)|2)dt, (II.69)

which is defined in Rn × U2 × V2 ×Rm. We can also express it as a function o the
original variations, as a function of (x̄(0), ū, v̄) ∈ Rn ×U2 × V2 by setting

γ(x̄(0), ū, v̄) := γP (x̄(0), ū, ȳ, h̄),

where ȳ is obtained from v̄ through Goh’s transform (II.51).

Definition II.3.1 (γ-growth). We say that a trajectory ŵ = (x̂, û, v̂) satisfies the γ-
growth condition in the weak sense if there exist ε, ρ > 0 such that

φ(x(0), x(T)) ≥ φ(x̂(0), x̂(T)) + ργ(x(0)− x̂(0), u− ū, v− v̂), (II.70)

for every feasible trajectory w that verifies ‖w− ŵ‖∞ < ε.

The following theorem was proved in [3], and previously proposed by Dmitruk
in [18] in the totally affine setting.

Theorem II.3.7 (Sufficient condition for weak optimality). If for some ρ > 0 the quadratic
functional ΩP2 satisfies

ΩP2(ξ̄, ū, ȳ, ȳ(T)) ≥ ργP (x̄(0), ū, ȳ, ȳ(T)), on P2, (II.71)

than ŵ is a weak minimum satisfying the γ-growth in the weak sense.
And conversely, if ŵ(·) is a weak minimum satisfying γ-growth and admitting a unique

normal multiplier, then equation (II.71) is satisfied for some ρ > 0.

Corollary II.3.8. If a feasible trajectory ŵ has a unique associated multiplier and satisfies the
coercivity condition (II.71) then(

Huu ET

E R

)
� ρI, a.e. on [0, T]. (II.72)
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III
The Shooting Algorithm: Formulation and

Convergence

III.1 The Shooting Algorithm

A well known method for solving TPBVPs is the shooting algorithm. Given an initial
guess for the states and costates, the method iteratively adjusts the initial values for
states and costates to verify the boundary conditions. Such approach is known in
the optimal control literature as an indirect method, since it follows the philosophy
of first optimize, then discretize, i.e. first obtain the Optimality System (OS) from the
PMP, then discretize the differential equations.

However, (OS) is parametrized by the multipliers β, each resulting in a solution
for the costate equation. Therefore, our goal is to find the initial values for the states
and costates, as well as the multipliers that satisfy (OS).

III.1.1 The shooting function

In order to formulate the desired numerical scheme we define the shooting function
as follows.

Definition III.1.1 (shooting function). Let S : Rn × Rn,∗ × Rdη =: D(S) → Rdη ×
R2n+2m be the shooting function given by

(x0, p0, β) =: ν 7→ S(ν) =



η(x0, x(T))

p0 + Dx0`[λ](x0, x(T))

p(T)− DxT`[λ](x0, x(T))

Hv[λ] (x(T), U(x(T), p(T)))

Ḣv[λ] (x(0), U(x(0), p(0)))


, (III.1)

where (x, p) is the solution of the Initial Value Problem (IVP)

ẋ = Hp[λ](x, U(x, p), V(x, p)), x(0) = x0,

ṗ = −Hx[λ](x, U(x, p), V(x, p)), p(0) = p0.
(III.2)

Solving the differential-algebraic system (OS) is equivalent to finding the roots
of the shooting function. With this in mind, the shooting algorithm is reduced to
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finding the roots of such function. Since the number of unknowns can be smaller
than the number of equations in S(ν̂) = 0, the Gauss-Newton method is a suitable
approach. At each step the method updates the current approximation νk by

νk+1 ← νk + ∆k, (III.3)

where the increment ∆k is computed by solving the linear approximation of the least
squares problem

min
∆∈D(S)

∣∣S(νk) + S ′(νk)∆
∣∣2 . (III.4)

The solution of the linear regression problem (III.4) is known to be

∆k = −
(
S ′(νk)

TS ′(νk)
)−1
S ′(νk)

TS(νk), (III.5)

provided that the matrix S ′(νk)
TS ′(νk) is non-singular.

One can prove that the Gauss-Newton method converges at least linearly, as long
as the derivative S ′(ν̂) exists and is injective. If in addition it is also Lipschitz contin-
uous, the method converges locally quadratically. The reader can check Appendix
A, or the works by Fletcher [20], or alternatively Bonnans [13], for more information
on the Gauss-Newton method.

III.1.2 Computation of the derivative of the shooting function

In this paragraph we aim at obtaining a differential system to be used afterwards
to compute the derivative of the shooting function. Recall the general DAE system
from (II.40) 

ξ̇(t) = F (ξ(t), α(t)),
0 = G(ξ(t), α(t)),
0 = I(ξ(0), ξ(T)),

and its respective linearization with respect to some solution w̃ = (ξ̃, α̃), equation
(II.41), 

˙̄ξ(t) = DξF (w̃)ξ̄ + DαF (w̃)ᾱ,
0 = DξG(w̃)ξ̄ + DαG(w̃)ᾱ,

0 = Dξ0I
(
ξ̃(0), ξ̃(T)

)
ξ̄(0) + DξTI

(
ξ̃(0), ξ̃(T)

)
ξ̄(T).

In order to write the linearization of (OS), we consider the generalized state ξ to
be (x, p), α to be (u, v) and w = (ξ, α). The linearized state and costate dynamics can
be written in terms of the variables (x̄, ū, v̄, p̄) as

˙̄x = Dx f (w)x̄ + Du f (w)ū + Dv f (w)v̄, (III.6)

˙̄p = −
(

p̄Hxp + x̄T Hxx + ūT Hux + v̄T Hvx

)
. (III.7)
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The end point conditions are also easily linearized, giving

0 = Dη(x̂(0), x̂(T))(x̄(0), x̄(T)), (III.8)

p̄(0) = −
x̄T(0)D2

x0
`[λ̂](ŵ) + x̄T(T)D2

x0xT
`[λ̂](ŵ) +

dη

∑
j=1

β jDx0 ηj

 , (III.9)

p̄(T) =

x̄T(T)D2
xT
`[λ̂](ŵ) + x̄T(T)D2

x0xT
`[λ̂](ŵ) +

dη

∑
j=1

β jDxT ηj

 . (III.10)

Finally, the algebraic conditions can be linearized using the following lemma.

Lemma III.1.1. For some sufficiently smooth function F commutation of the operations of
linearization and differentiation holds, that is

d
dt

LinF = Lin
d
dt
F . (III.11)

Therefore, it suffices for us to compute the linearization of the switching function
and perform successive differentiations, in order to achieve explicit expressions for
the last components of (III.1.1). The linearization gives

LinHu = p̄Du f + x̄T HT
ux + ūT Huu (III.12)

LinḦv = p̄Dv f + x̄T HT
vx (III.13)

LinHv|t=T = p̄Dv f + x̄T HT
vx

∣∣∣
t=T

(III.14)

LinḢv
∣∣
t=0 =

d
dt

∣∣∣∣
t=0

(
p̄Dv f + x̄T HT

vx

)
. (III.15)

Once the linearized system is computed, we can evaluate the derivative of the shoot-
ing function. Such derivative, evaluated in the direction ν̄ := (x̄0, p̄0, β̄) is given by

S ′(ν̂)ν̄ :=



Dη(x̂(0), x̂(T))(x̄(0), x̄(T))

p̄(0) +

[
x̄T(0)D2

x0
`+ x̄T(T)D2

x0xT
`+

dη

∑
j=1

β̄ jDx0 ηj

]

p̄(T)−
[

x̄T(T)D2
xT
`+ x̄T(T)D2

x0xT
`+

dη

∑
j=1

β̄ jDxT ηj

]
p̄Dv f + x̄T HT

vx

∣∣∣
t=T

d
dt

(
p̄Dv f + x̄T HT

vx

)∣∣∣∣
t=0


, (III.16)

where the derivatives are taken along ŵ and λ̂. Note that for each iteration it is
necessary to numerically integrate both the original system of states and costates
and the associated variational dynamics (i.e. the linearized system).
Notation: The lineariazation (III.6)-(III.10), (III.12)-(III.15) is referred as (LS).

III.2 Convergence of the unconstrained case

Now we turn to the proof of convergence for the shooting scheme proposed. For
this we shall use the quadratic functional defined in (II.67) to formulate an auxiliary
linear quadratic system.
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III.2.1 The auxiliary linear quadratic problem

Let (LQ) denote the optimal control problem defined by (III.17)-(III.20) below

minimize ΩP2(ξ̄, ū, ȳ, h̄) (III.17)
subject to

˙̄ξ = fx ξ̄ + fuū + Bȳ, (III.18)
˙̄h = 0, (III.19)
0 = Dηj(x̂(0), x̂(T))

(
ξ̄(0), ξ̄(T) + fv(T)h

)
, (III.20)

where ū and ȳ denote the control variables, ξ̄ and h̄, the states of our auxiliary
system. Note that the feasible trajectories of (LQ) are the critical directions from
P2. Once the coercivity condition (II.71) is assumed the unique optimal solution is
(ξ̄, ū, ȳ, h) = 0. Our strategy will be to exploit (LQ)’s corresponding differential-
algebraic system, obtained by applying the PMP, along with the sufficient condition
for the original problem discussed in Theorem II.3.7.

Let χ̄ and χ̄h denote the costates associated with ξ̄ and h̄, respectively. The qual-
ification condition for the original problem given in Assumption 2 easily translates
into the same constraints qualification of problem (LQ). Therefore, the weak mini-
mizer of the auxiliary problem, (ξ̄, ū, ȳ, h̄) = 0, also has a unique multiplier, which
we shall refer as λLQ :=

(
χ̄, χ̄h, βLQ).

We proceed with the formulation of the auxiliary differential-algebraic system.
Define the pre Hamiltonian for problem (LQ)

H[λLQ](ξ̄, ū, ȳ) := χ̄( fx ξ̄ + fuū + Bȳ) + 1
2 ξ̄T Hxx ξ̄

+ ūT Hux ξ̄ + ȳT Mξ̄ + 1
2 ūT Huuū + ȳTEū + 1

2 ȳT Rȳ,
(III.21)

as for the endpoint Lagragian

`LQ[λLQ](ξ̄(0), ξ̄(T), h̄) := 1
2 g(ξ̄(0), ξ̄(T), h̄)

+
dη

∑
j=1

βLQ
j Dηj

(
ξ̄(0), ξ̄(T) + fv(T)h̄

)
,

(III.22)

where g was defined in (II.61).The costate dynamics becomes

− ˙̄χ =
∂H
∂ξ̄

[λLQ] = χ̄ fx + ξ̄T Hxx + ūT Hux + ȳT M, (III.23)

with transversality conditions

χ̄(0) = −ξ̄T(0)D2
x2

0
`+ (ξ̄(T) + fv(T)h̄)TD2

x0xT
`+

dη

∑
j=1

Dx0 ηj, (III.24)

χ̄(T) = ξ̄T(T)D2
x2

T
`+ ξ̄T(0)D2

x0xT
`+ h̄T Hvx(T) +

dη

∑
j=1

DxT ηj. (III.25)

The costate variable χ̄h is trivial and vanishes identically since ˙̄χh = 0 and χ̄h(0) = 0.
Finally, the stationarity of the Hamiltonian gives

0 = Hū = χ̄ fu + ξ̄T HT
xu + ūT Huu + ȳTE, (III.26)

0 = Hȳ = χ̄B + ξ̄T MT + ūTET + ȳTR. (III.27)
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The set of equations (III.18)-(III.20), (III.23)-(III.25) and (III.26)-(III.27) will be re-
ferred as (LQS), the Linear Quadratic System. Notice that for this system, the Legendre-
Clebsch conditions translate to

D2
(ū,ȳ)H = D2

(ū,ȳ)ΩP2 =

(
Huu ET

E R

)
� 0, (III.28)

hence if we assume coercivity for the original problem, Corollary II.3.8 implies that
solving (LQ) is equivalent to solve (LQS) as in Theorem II.2.5.

III.2.2 Linking the auxiliary problem with the optimality system

In this section we recall the linearization (LS) of the optimality system (OS) along
the nominal trajectory ŵ = (x̂, û, v̂). Define the mapping

(x̄, ū, v̄, p̄, β) 7→
(

ξ̄, ū, ȳ, h̄, χ̄, χ̄h, βLQ
)

(III.29)

throught the equations

ȳ(t) :=
∫ t

0
v̄(s)ds, ξ̄ := x̄− fvȳ, χ̄ := p̄ + ȳT Hvx,

χ̄h := 0, h̄ := ȳ(T), βLQ = β.
(III.30)

This Goh-type transformation is clearly one-to-one. We will show that it maps so-
lutions of (LS) into solutions of (LQS) and use the coercivity condition to obtain
information about (LS). We also obtain information on the solution of (OC), since
coercivity is a sufficient condition for optimality in Theorem II.3.7. We start with the
following lemma.

Lemma III.2.1. If ŵ is a weak solution of (OC), the injective mapping (x̄, ū, v̄, p̄, β) 7→
(ξ̄, ū, ȳ, h̄, χ̄, χ̄h, βLQ) defined in (III.30) converts solutions of (LS) into solutions of (LQS).

Proof. We must check that given a solution (x̄, ū, v̄, p̄, β) of (LS), the corresponding
transformed variables (ξ̄, ū, ȳ, h̄, χ̄, χ̄h, βLQ) solve (LQS).

Starting with the state ξ̄, we recall the dynamics of the linearized variable x̄ given
in equation (III.6) so that one has

˙̄ξ = ˙̄x− ḟvȳ− fv ˙̄y = fx ξ̄ + fuū + Bȳ,

retrieving the dynamics in (III.18). The initial conditions are trivially satisfied since
ȳ(0) = 0. The dynamics for h̄ are satisfied by the definition.

For the costate dynamics we recall the dynamics of the linearized costates from
(III.7) and the definition of the matrix M in (II.58).

− ˙̄χ = − ˙̄p− ˙̄yT Hvx − ȳT Ḣvx

= p̄Hxp + x̄T Hxx + ūT Hux + v̄T Hvx − v̄T Hvx − ȳT Ḣvx

= ( p̄ + ȳT Hvx)︸ ︷︷ ︸
=χ̄

fx + (x̄− fvȳ)T︸ ︷︷ ︸
=ξ̄T

Hxx + ȳ ( f T
v Hxx − Ḣvx − Hvx fx)︸ ︷︷ ︸

=M

= χ̄ fx + ξ̄T Hxx + ȳT M.



40 Chapter III. The Shooting Algorithm: Formulation and Convergence

Hence the dynamics of χ̄ match (III.23). From equation (III.30) we obtain χ̄(0) =
p̄(0) and conclude (III.24). The final conditions are trickier, one substitutes expres-
sions for x̄(T) and p̄(T) into equation (III.14) and conclude since

S = Hvx fv = f T
v HT

vx,

which is a consequence of the Goh conditions (II.2.3), recovering the transversality
condition for χ̄(T).

Finally we must check the stationarity of the Hamiltonian for (LQS), equations
(III.26) and (III.27). Starting from (III.12) and (III.30) we obtain

0 = (χ̄− ȳT Hvx) fu + (ξ̄ + fvȳ)T HT
ux + ūT Huu

= χ̄ fu + ξ̄T HT
ux + ūT Huu + ȳT( f T

v HT
ux − Hvx fu︸ ︷︷ ︸

=E

),

= χ̄ fu + ξ̄T HT
ux + ūT Huu + ȳTE,

the stationarity with respect to ū. On the other hand, the same substitutions applied
to (III.13) yield

0 = χ̄ fv + ξ̄T HT
vx.

Differentiating with respect to time and using the definitions of B in (II.53) and E in
(II.58), we recover the stationarity (III.27) with respect to ȳ.

This shows that the tuple (ξ̄, ū, ȳ, h̄, χ̄, χ̄h, βLQ) is a solution of (LQS).

III.2.3 Convergence of the shooting algorithm

We are in position to prove the convergence of the shooting algorithm. We will
use the following result on the behavior of the Gauss-Newton algorithm. Recall the
algorithm given in (III.3)-(III.5).

Proposition III.2.2 ([13, 20]). If the matrix S ′(ν̂) is injective, then the Gauss-Newton algo-
rithm, (III.3)-(III.5), is locally convergent. If in addition S ′(ν̂) is Lipschitz continuous, the
algorithm converges locally quadratically.

The main result of this article is the theorem below that states a sufficient con-
dition for the quadratic convergence of the shooting algorithm near a local optimal
solution.

Theorem III.2.3. Let ŵ be a trajectory of problem (OC) that verifies condition (II.71) and
the Legendre-Clebsch conditions (SLC). Then the shooting algorithm is locally quadratically
convergent.

Proof. From Theorem II.3.7, the trajectory ŵ is a local weak minimum for problem
(OC). In addition, since (SLC) hold, we can use Theorem II.2.5 and solve (OS) to
find ŵ. Therefore, consider some solution (x̄, ū, v̄, p̄, β) of (LS), and the associated
transformed process (ξ̄, ū, ȳ, h̄, χ̄, χ̄h, βLQ) given by (III.30). The latter is a solution of
(LQS) by Lemma III.2.1.

However, once we assume condition (II.71) the unique solution to (LQS) is the
null trajectory, and since the transformation (III.30) is one-to-one, the solution to
(LS) is also null. But from equation (III.16), the vectors ν̄ in the kernel of S ′(ν̂) are
precisely the initial conditions for the solutions of (LS). We conclude that S ′(ν̂) is in-
jective, in addition, it is Lipschitz continuous from Assumption 1. The proof follows
from III.2.2.
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The proof of Theorem (III.2.3) is summarized in the following schematic in Figure
III.1.

LQ

SC

LQS

LS

Goh

Null unique solutio
n

Null
unique
solu-
tion

Optimality System

FIGURE III.1: Schematic proof of Theorem III.2.3. The sufficient con-
ditions (SC) from Theorem II.3.7 imply that LQ and LQS have a null
unique solution. From Lemma III.2.1, the solutions of LS and LQS
are obtained one from the other through the Goh transform, hence LS
admits only the null solution. Since these initial conditions for solu-
tions of LS spam the kernel of S ′(ν̂), this kernel is trivial and S ′(ν̂) is

injective.

III.3 Including control constraints

In this section we extend the proposed algorithm to problems where the controls are
subject to bounds. We denote by (CP) the problem obtained by adding the following
control constraints to (OC):

u(t) ∈ U, a.e. on [0, T],
0 ≤ vi(t) ≤ 1, a.e. on [0, T], for i = 1, · · · , m,

(III.31)

where U is an open subset of Rl . Consider also the following definition.

Definition III.3.1. The component v̂i is said to have a singular arc in an interval I,
whenever 0 < v̂i(t) < 1 a.e. on I. On the other hand, a component v̂i has an upper
bang arc (resp. lower bang arc) on an interval I whenever v̂i(t) = 1(resp. v̂i(t) = 0) a.e.
on this interval, and has a lower bang arc whenever v̂i(t) = 0 a.e. on such interval. If
v̂i has either an upper or a lower bang arc on I then we can say, shortly, that it has a
bang arc on I.

Assumption 6. We assume the following hypotheses on the optimal (û, v̂).

(i) Each linear control v̂i, with i = 1, . . . , m, presents a bang-singular structure, i.e. v̂i
is a finite concatenation of bang and singular arcs.

(ii) The bang-singular structure of v̂ induces a partition of the time interval [0, T], that
we write as

{0 := T̂0 < T̂1 < T̂2 < · · · < T̂N−1 < T̂N := T}.
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At each interval Îk := [T̂k, T̂k+1], every component v̂i is either bang or singular, and at
T̂k some control v̂i switches from its current arc, and presents a discontinuity of first
kind. Hence, defining the sets

Sk := {1 ≤ i ≤ m : v̂i is singular on Îk},
Ak := {1 ≤ i ≤ m : v̂i = 0 a.e. on Îk},
Bk := {1 ≤ i ≤ m : v̂i = 1 a.e. on Îk},

there must exist some ρ > 0 such that

ρ < v̂i(t) < 1− ρ, for all i ∈ Sk, a.e. on t ∈ Îk. (III.32)

In addition, we assume that the nonlinear control satisfies

û([0, T]) + ρB ⊂ U. (III.33)

(iii) For each k = 1, . . . , N, let vSk denote the vector with components vi with i ∈ Sk. To
obtain a feedback representation in a similar manner as done in Section ??, we assume

û is continuously differentiable in [0, T],
v̂Sk is continuous in Îk, for k = 1, . . . , N.

(III.34)

In addition, on each interval Îk we assume the following form of the generalized strength-
ened Legendre-Clebsch conditions

Huu[λ̂](ŵ) � 0, −
∂ḦvSk

∂vSk

[λ̂](ŵ) � 0.

As a consequence of the minimization of the Hamiltonian given by the PMP, if
a component vi is singular in some interval I, then Hvi(t) = 0 a.e. on I. Hence, as
done in Section II.2, we can use the system Hu[λ̂](ŵ)

−ḦvSk
[λ̂](ŵ)

 = 0, a.e. on Îk, (III.35)

along with item (iii) from Assumption 6 to write the controls û and v̂Sk in feedback
form, which we represent as

û = U(x̂, p̂), v̂Sk = VSk(x̂, p̂). (III.36)

III.3.1 The transformed problem

Given a feasible control (û, v̂), we call control structure the configuration of bang and
singular arcs of v̂. In (CP), there may be feasible trajectories with a bang-singular
structure different from the one of (û, v̂). However, if (û, v̂) is a local solution for
(CP), it will also be a local solution for a problem with a fixed control structure. We
use the knowledge of the optimal control structure to formulate a new unconstrained
problem whose feasible controls correspond to controls of the original problem that
have such fixed structure. This is achieved by a reparametrization from [0, T] to the
interval [0, 1] as described next.
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In this new unconstrained problem, for each switching time we associate a state
variable Tk having null dynamics, keeping the convention that T0 = 0 and TN = T.
Such variables are initialized in the algorithm as a rough estimate of the optimal
switching times, that will be iteratively tunned by the shooting scheme. For each in-
terval Ik := [Tk, Tk+1], we also associate a state variable xk, that is the reparametriza-
tion of x

∣∣
Ik

to the interval [0, 1].
The control variables of the new problem are defined as follows. For each interval

Ik of the partition we define a control variable uk : Ik → Rl that appears nonlinearly
and an affine control vk : Ik → R|Sk |. This way each vk has as many components as
the number of singular components of v̂ in Îk. The bang components of v appear as
constants and not as control variables, i.e. are fixed to 0 or 1.

The trajectories of the transformed problem have the form

W :=
((

xk
)N

k=1
,
(

uk
)N

k=1
,
(

vk
)N

k=1
, (Tk)

N
k=0

)
, (III.37)

and the transformed problem, denoted as (TP), is the following:

min φ(x1(0), xN(1))

s.t. ẋk = (Tk − Tk−1)

(
∑

i∈Bk∪{0}
fi(xk, uk) + ∑

i∈Sk

vk
i fi(xk, uk)

)
, k = 1, · · · , N,

Ṫk = 0, k = 1, · · · , N − 1,

η(x1(0), xN(T)) = 0,

xk(1) = xk+1(0), k = 1, · · · , N − 1.

Note that given some admissible trajectory (x, u, v) of (CP), and its associated
switching times (Tk), we can obtain a feasible trajectory for (TP) via the following
transformation

xk(t) := x (Tk−1 + (Tk − Tk−1)t) ,

uk(t) := u (Tk−1 + (Tk − Tk−1)t) ,

vk(t) := v (Tk−1 + (Tk − Tk−1)t) .

for t ∈ [0, 1]. (III.38)

In fact, we prove below that we can derive the weak local optimality of a solution
for (TP) from a solution for (CP), in a sense of optimality slightly weaker than L∞.
To do this, consider the definition of Pontryagin minimum [40].

Definition III.3.2. A feasible trajectory ŵ ∈ W is a Pontryagin minimum of (CP) if
for any positive N, there exists some εN > 0 such that ŵ is a minimum in the set of
feasible trajectories w = (x, u, v) ∈ W satisfying

‖x− x̂‖∞ < εN , ‖(u, v)− (û, v̂)‖1 < εN , ‖(u, v)− (û, v̂)‖∞ < N.

Lemma III.3.1. If ŵ is a Pontryagin minimum of (CP), then Ŵ obtained from ŵ using
transformation (III.38) is a weak minimum of (TP).

Proof. Since ŵ is a Pontryagin minimum of (CP), from Definition III.3.2, there exists
ε > 0 such that

‖x− x̂‖∞ < ε, ‖(u, v)− (û, v̂)‖1 < ε, ‖(u, v)− (û, v̂)‖∞ < 1. (III.39)
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Let Ŵ be the transformation of ŵ through (III.38). We now prove that Ŵ is weakly
optimal for (TP). Hence we search appropriate δ̄, ε̄ for which all feasible trajectories
W =

(
(xk), (uk), (vk), (Tk)

)
of (TP) that satisfy∣∣Tk − T̂k

∣∣ < δ̄,
∥∥∥(uk, vk)− (ûk, v̂k)

∥∥∥
∞
< ε̄, for all k = 1, · · · , N (III.40)

will be mapped into neighborhood of ŵ where it is optimal. Such mapping of W 7→
w is done as follows

x(t) := xk
(

t− Tk−1

Tk − Tk−1

)
, u(t) := uk

(
t− Tk−1

Tk − Tk−1

)
, for t ∈ Ik, (III.41)

vi(t) :=


0, if t ∈ Ik and i ∈ Ak,

vk
i

(
t−Tk−1

Tk−Tk−1

)
, if t ∈ Ik and i ∈ Sk,

1, if t ∈ Ik and i ∈ Bk.
(III.42)

The dynamics (II.2) are clearly satisfied by (x, u, v) obtained from (III.41)-(III.42).
The end point constraints in (II.3) are also easy to verify since x(0) = x1(0) and
x(T) = xN(1) along with the feasibility of W.

The last step to check feasibility of w are the control constraints. For the nonlin-
ear controls, note that since

∥∥uk − ûk
∥∥

∞ < ε̄, we have that ‖u− û‖∞ < ε̄. Recalling ρ
given in (III.32)-(III.33), if we choose ε̄ < ρ, then u ([0, T]) ⊂ U. To discuss the feasi-
bility of the linear controls, from equation (III.32), we can choose ε̄ so that, whenever
t ∈ Ik and i ∈ Sk,

0 < ρ− ε̄ ≤ vi(t) ≤ 1− ρ + ε̄ < 1. (III.43)

On the other hand, for i ∈ Ak ∪ Bk, we know that vi(t) ∈ {0, 1} in view of (III.42), so
that the control constraints are still satisfied. This concludes the proof of the feasibil-
ity of (x, u, v).

In the sequel, we find δ̄ and ε̄ so that, if W satisfies (III.40), then the transformed
w verifies (III.39) for the given ε. The analysis is analogous for both controls u and v,
hence we will conduct the calculations component wise only for u. We have∫

Ik∩ Îk

|ui(t)− ûi(t)|dt ≤
∫

Ik∩ Îk

∣∣∣∣uk
i

(
t− Tk−1

Tk − Tk−1

)
− ûk

i

(
t− Tk−1

Tk − Tk−1

)∣∣∣∣dt

+
∫

Ik∩ Îk

∣∣∣∣ûk
i

(
t− Tk−1

Tk − Tk−1

)
− ûk

i

(
t− T̂k−1

T̂k − T̂k−1

)∣∣∣∣dt.
(III.44)

The first integral in the r.h.s. of latter display is bounded by ε̄|Ik ∩ Îk| in view of
(III.40). For the second term, recall that û is continuous on [0, T] and so are the
components of ûk over Îk, so that they are uniformly continuous over these intervals.
Therefore, for each k = 1, · · · , N, we can find some δ̄k > 0 such that, if |Tk− T̂k| < δ̄k,
then ∣∣∣∣ûk

i

(
t− Tk−1

Tk − Tk−1

)
− ûk

i

(
t− T̂k−1

T̂k − T̂k−1

)∣∣∣∣ < ε̄

for every component of ûk. Hence we only need to choose δ̄ := min
k=1,··· ,N

δ̄k. We proved

that ∫
Ik∩ Îk

|ui(t)− ûi(t)|dt ≤ 2ε̄|Ik ∩ Îk|. (III.45)
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Next, we need to estimate the integral outside the intersection Ik ∩ Îk. We assume
w.l.o.g. that Tk < T̂k hence, in view of (III.40),

∫ T̂k

Tk

|ui(t)− ûi(t)|dt ≤ δ̄ε̄. (III.46)

Adding up all the terms, we get from (III.45)-(III.46), that

‖ui − ûi‖1 < ε̄(2T + (N − 1)δ̄).

An analogous estimate can be obtained for ‖v− v̂‖1. Finally, taking into account all
the control components m of the linear controls and l from the nonlinear controls,
we get that, if

ε̄(2T + (N − 1)δ̄) <
ε

m + l
,

then ‖u− û‖1 < ε, as desired.

III.3.2 The shooting algorithm for the transformed problem

In order to have a proper algorithm to solve control constrained problems, our fi-
nal step is to define a proper shooting function and apply the shooting formulation
described in Section III.1 to problem (TP).

We start by stating the PMP for this unconstrained problem (TP). Define the end-
point Lagrangian

˜̀ := φ(x1(0), xN(1)) +
dη

∑
j=1

β jηj(x1(0), xN(T)) +
N−1

∑
k=1

θk
(

xk(1)− xk+1(0)
)

. (III.47)

Note that each multiplier β j is associated with the end point constraints that come
from the original problem and each θk is associated with the additional constraints
from (TP), included to guarantee the continuity of x. The pre-Hamiltonian of (TP) is
given by

H̃ :=
N

∑
k=1

(Tk − Tk−1)Hk,

where Hk := pk ·
(

∑
i∈Bk∪{0}

fi(xk, uk) + ∑
i∈Sk

vk
i fi(xk, uk)

)
.

(III.48)

Hence, from the PMP, the costates follow the dynamics

ṗk = −(Tk − Tk−1)Dxk Hk, (III.49)
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with transversality conditions

p1(0) = −Dx1
0
φ−

dη

∑
j−1

β jDx1
0
ηj(x1(0), xN(T)) (III.50)

pk(1) = θk, for k = 1, · · · , N − 1,
pk(0) = θk−1, for k = 2, · · · , N,

(III.51)

pN(1) = DxN
1

φ +
dη

∑
j−1

β jDxN
1

ηj(x1(0), xN(T)). (III.52)

Note that equation (III.51) can be replaced by

pk(1) = pk+1(0), for k = 1, · · · , N − 1, (III.53)

hence eliminating the multipliers θk. We must also address the costates pTk associ-
ated with the switching times, which satisfy

ṗTk = −Hk + Hk+1, pTk (0) = 0, pTk (1) = 0, for k = 1, · · · , N − 1. (III.54)

Combining all conditions from (III.54), we obtain∫ 1

0

(
Hk+1 − Hk

)
dt = pTk(0)− pTk(1) = 0. (III.55)

Since the dynamics are autonomous the Hamiltonian is constant for the optimal tra-
jectory and we equivalently express the conditions (III.55) for pTk as

Hk = Hk+1, for k = 1, · · · , N − 1. (III.56)

Now we are in position to adapt the shooting scheme for solving (TP). Following the
steps from Section ?? we start finding the feedback form for the controls. It suffices
to use the representation found in equation (III.36)

uk = U
(

xk, pk
)

vk = VSk

(
xk, pk

)
, for k = 0, · · · , N. (III.57)

By Lemma III.3.1 such controls must also be feasible for (TP) and when the feedback
arguments x̂k and p̂k correspond to the nominal trajectory, we obtain the optimal
controls.

We must also define an appropriate shooting function that will express the sta-
tionarity of the Hamiltonian, the initial-final constraints and transversality condi-
tions.

Stationarity with respect to the nonlinear controls is equivalent to the feedback
representation for u given in equation (III.36). For the linear controls, the feedback
form is equivalent to ḦvSk

= 0. Hence we must also impose Hk
vk

i
(0) = 0 and Ḣk

vk
i
(0) =

0 to ensure the stationarity Hvk = 0.
Note that we can choose to include the constraints related the continuity of the

states and costates or integrate each xk and pk using the final values of xk−1 and
pk−1 as initial conditions. The clear advantage of the latter strategy is the smaller
number of shooting variables, i.e. the initial conditions for states and costates at
the switching times can be omitted. On the other hand, explicitly including these
constraints makes the algorithm more stable numerically and favors parallelization
for computational implementations, see [51].
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The following is the shooting function associated to (TP) with the full set of
shooting variables

S : RNn ×RNn,∗ ×RN−1 ×Rdη → R(N−1)n+dη ×R(N+1)n+N−1+2 ∑ |Sk |,∗

ν 7→ S(ν) :=



η(x1(0), xN(1))(
xk(1)− xk+1(0)

)
k=1,··· ,N−1(

pk(1)− pk+1(0)
)

k=1,··· ,N−1

p1(0) + Dx1
0
˜̀ (x1(0), xN(1)

)
pN(1)− DxN

1
˜̀ (x1(0), xN(1)

)
(

Hk(1)− Hk+1(0)
)

k=1,··· ,N−1(
pi · fi

(
xi, Ui) (0)) i ∈ Sk

k = 1, . . . , N(
pi · [ f0, fi]

x(0)
)

i ∈ Sk
k = 1, . . . , N



(III.58)

where we define the vector of shooting arguments as

ν :=
((

xk(0)
)N

k=1
,
(

pk(0)
)N

k=1
, (Tk)

N−1
k=1 , β

)
. (III.59)

We recall equation (II.20) that gives a concise analytical form for Ḣvi and was used
in the formulation of the shooting function.

Since the new problem (TP) falls in the same category of unconstrained problem
(OC), we join Lemma III.3.1 and Theorem III.2.3 in the following.

Theorem III.3.2. If ŵ is a Pontryagin minimum of (CP) such that Ŵ (III.37) satisfies the
coercivity condition (II.71) for problem (TP), then the shooting algorithm for (TP) is locally
quadratically convergent.
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IV
Implementation and Examples

IV.1 The Algorithm

In this section we give all the details concerning the implementation of our shooting
scheme. To keep the presentation clear, we will start with the unconstrained case,
in the sequel we discuss how we have used symbolic computations to automate the
work of assembling the transformed problem (TP), effectively reducing the original
system to the unconstrained case. We recall the definition of the shooting function
from (III.1) and the shooting arguments ν. Recall that ν has only initial conditions
for x, p, on the other hand, to evaluate S(ν) we require the values of states and
costates at terminal time. Therefore we need a numerical scheme to integrate the
Hamiltonian system on (x, p) encapsulated inside the mapping ν 7→ S(ν). Hence
we obtain the final values (x(T), p(T)) implicitly and finally use such values in the
computation of S(ν).

In order to make this dependence explicit, we define the function T = T (x0, xT, p0, pT, β)

T (x0, xT, p0, pT, β) :=



η(x0, xT)

p0 + Dx0`[λ](x0, xT)

pT − DxT`[λ](x0, xT)

Hv[λ] (xT, U(xT, pT))

Ḣv[λ] (x0, U(x0, p0))


.

The difference between S and T is in their respective domains. Recall that S is
defined over Rn×Rn,∗×Rdη , on the other hand T is defined over R2n×R2n,∗×Rdη .
Furthermore, it is perfectly possible to evaluate T with arguments xT, pT which are
not the result of the numerical integration of the initial conditions x0, p0. This is
not the case with S since the choice of numerical integrator is “hardwired” into the
evaluation of the shooting function. However, it is clear that given an argument
ν = (x0, p0, β), the equality between S and T holds in the following sense,

S (ν) = T (x0, x(T, x0), p0, p(T, p0), β) .
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The core of the algorithm consists in the Newton-like optimization loop, with the
update scheme

∆k =
(
S ′(νk)

TS ′(νk)
)−1
S ′(νk)

TS(νk),

νk+1 = νk + ∆k.

As we have discussed, due to the dependence of the shooting function on the
integration scheme, the practical computation of its derivative becomes a difficult
issue. Indeed, one cannot ignore the implicit dependence on the terminal values
(x(T), p(T)) and their contribution in the derivatives with respect to the initial con-
ditions. Fortunately, we can compute the derivatives of the terminal values with
respect to the initial conditions by means of the variational equation. Since the states
(x, p) evolve with the Hamiltonian system

(
ẋ
ṗ

)
=

 ∂H
∂p

−∂H
∂x

 ,

then we can compute derivatives with respect to the initial conditions, see [15, 31],

Ψ(t) =


∂x(t)
∂x0

∂x(t)
∂p0

∂p(t)
∂x0

∂p(t)
∂p0


with the following variational ODE

Ψ̇(t) =


∂2H
∂p∂x

∂2H
∂p∂p

− ∂2H
∂x∂x

− ∂2H
∂x∂p

Ψ(t), Ψ(0) = I2n×2n. (IV.1)

Note however, that in general, the second order derivatives of the Hamilto-
nian depend on the states and costates (x, p), therefore we need to integrate the
variables x, p, Ψ simultaneously. Finally, once we have computed the final values
x(T), p(T), Ψ(T) we can compute the derivative of the shooting function as

S ′(ν) =
(

Dx0,p0T + DxT ,pTT ·Ψ(T)
∂T
∂β

)
. (IV.2)

The same analysis is easily done for the constrained case, we need only to pay
some attention to the notation introduced by problem (TP). We unify the state and
costate variables in the same vector X ∈ RnN ×RnN,∗ ×RN−1 where

X =
(
(xk)N

k=1, (pk)N
k=1, (Tk)

N−1
k=1

)
. (IV.3)

After substituting the unconstrained controls from problem (TP) with their feedback
representations, the dynamics of X and Ψ assume the following form

Ẋ = F(X), X(0) = X0,
Ψ̇t = DxF(X)Ψt, Ψ(0) = I.

(IV.4)



IV.1. The Algorithm 51

The following subsections discuss the different methods we have used to auto-
mate the task of assembling the appropriate system (IV.4) for problem (TP) and the
variation of a Runge-Kutta method that exploits the particularities of this coupled
system in the numerical integration. We end the section summarizing our algorithm
and giving the final details of our implementation.

IV.1.1 Symbolic Computations and Assembling Problem TP

The first difficulty of our proposed algorithm is to assembly the associated trans-
formed problem (TP). Even the simpler constrained problems often present many
arcs, making the manual declaration of the required functions, as well as their jaco-
bians, a tiring and time consuming task.

Therefore, the main goal of our implementation is to automate such processes,
specially regarding the computations of the singular linear controls following equa-
tion (II.37). For this we have employed symbolic computations using a Computer
Algebra System (CAS) to compute the quantities γij from equation (II.37).

In the sequel we specify the steps for the case with a single singular control. In
such case, the singular arc in feedback form becomes

V(x, p) = −γ10

γ11
.

Even this simple expression can require lots of computations. Take for instance the
example treated in Section IV.2.2, we dedicated Appendix B to the manual compu-
tations of the singular controls for this problem. In this example we have reached a
satisfactory analytical expression, however using many tricks and identities coming
from the optimality conditions.

These computations might be misleading since identities such as the Goh condi-
tions

p · [ fi, f j] ≡ 0,

do not state that these equalities hold in the sense that this computation will be
satisfied for any choice of x, p, they are only guaranteed to hold along the optimal
trajectories. For this reason, it is not unlikely that some of these conserving quanti-
ties are the sum of components that do not vanish, and hence making the manual
computations for the singular controls larger.

Other strategies to obtain the linear controls, for example solve the system of
equations (II.37) numerically, also have some disadvantages. Even if this linear sys-
tem can be solved with high accuracy, there is still the need to compute the jacobian
of the dynamics. This would require some finite differences approximation for the
partial derivatives, introducing another source of numerical residual to the algo-
rithm, which should not be neglected. With symbolic computations we do not face
this issue, since we always have the exact expressions, even if they are not simplified.

Once we have the singular controls, the dynamics are treated modularly, accord-
ing to the type of arc we must deal with. Let ω ∈ {ω+, ω−, ωs} denote the possible
types of arcs, where ω+ and ω− denote the upper and lower bang arcs and ωs the
singular arcs, we define the following parametrized vector fields

f ω(x, p) =


f0 (x, U(x, p)) , if ω = ω−,
f0 (x, U(x, p)) + V(x, p) f1 (x, U(x, p)) , if ω = ωs,
f0 (x, U(x, p)) + f1 (x, U(x, p)) , if ω = ω+.

(IV.5)
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This parametrized vector fields can be easily implemented using hashtables, map-
ping arcs to the appropriated dynamic, ω 7→ f ω. Hence, given a user input of a
sequence of arcs (ωk)

N
k=1, we define f k = f ωk(xk, pk), where xk, pk denote the states

and costates, referent to arc k, introduced by problem (TP). Finally, we define the
dynamics in (IV.4) as

F(X) =


(
(Tk − Tk−1) f k)N

k=1(
(Tk − Tk−1)pk · Dx f k)N

k=1
ON−1×1

 . (IV.6)

Afterwards, the computation of the jacobian DF is straight forward with symbolic
differentiation.

IV.1.2 Integrating the Variational System

In this section we intend to analyse general Runge-Kutta schemes to integrate the
variational system coupled with the states dynamics.

Ẋ = F(t, X), X(0) = X0,
Ψ̇t = DxF(t, X)Ψt, Ψ(0) = I.

(IV.7)

Here we have chosen to keep the dependence on time to make the exposition of the
Runge-Kutta methods clearer. The original ODE can be integrated numerically inde-
pendently of the second system, but the variational dynamics requires the values of
the states at each time in order to evaluate the jacobian. We will assume that numer-
ical approximations for the states x(tk) ≈ xk are available and describe an update
formula for a general Implicit Runge Kutta method for the variational ODE. We will
show that those update schemes can be written as the solution of linear systems that
admit a parallelizable implementation.

The general s-stage Runge Kutta update scheme is given by the following system

ki = F

(
t0 + cih, X0 + h

s

∑
`=1

ai`k`

)
, for i = 1, . . . , s

X1 = X0 + h
s

∑
i=1

biki,

(IV.8)

also represented by a Butcher tableau (A, b, c), where A ∈ Rs×s, b ∈ R1×s, c ∈ Rs×1.
Note that we can rewrite the previous system as a fixed point problem defining the
quantities

gi := X0 + h
s

∑
`=1

ai`k`

= X0 + h
s

∑
`=1

ai` F

(
t0 + c`h, X0 + h

s

∑
j=1

a`jk j

)
︸ ︷︷ ︸

=F(t0+c`h,g`)

this way, system (IV.8) can be written in terms of the new variables gi as



IV.1. The Algorithm 53

gi = X0 + h
s

∑
`=1

ai`F(X0 + c`h, g`), for i = 1, . . . , s

X1 = X0 + h
s

∑
i=1

biF(X0 + cih, gi).
(IV.9)

This new system is useful to provide conditions upon the maximum step size h
that guarantees the existence of an unique solution of for the Runge Kutta scheme1,
see for instance [29, 30]. This is why we choose to present this intermediate trans-
formation of the original problem, but to facilitate our computations, we introduce
the new variables Zi := gi − X0. Obtaining such quantities reduces to solving the
following nonlinear system of equations

Zi = h
s

∑
`=1

ai`F(X0 + cih, X0 + Z`), for i = 1, . . . , s. (IV.10)

In matrix notation, we obtain the following system for Z := (ZT
1 , . . . , ZT

s )
T,

Z :=

 Z1
...

Zs

 = h(A⊗ In×n)

 F(t0 + cih, X0 + Z1)
...

F(t0 + cih, X0 + Zs)

 , (IV.11)

where we have employed the Kronecker product notation

A⊗ B :=

 a11B · · · a1nB
...

. . .
...

an1B · · · annB

 , (IV.12)

This formulation is valid for any ODE, and indeed is useful in a Newton scheme
to solve the nonlinear fixed point problem of the variables gi. For our purposes,
we exploit the fact that the dynamics of the variational system can be computed
by means of matrix multiplications to formulate a linear system for Z. For this we
introduce the notation

Fi := DF(t0 + cih, X(t0 + cih)), for i = 1, . . . , s

so that equation (IV.11) becomes the linear system

Z = h(A⊗ In×n)diag(F1, . . . , Fs)︸ ︷︷ ︸
=:Fsn×sn

 Ψ0 + Z1
...

Ψ0 + Zs

 . (IV.13)

Solving for Z, we obtain

Z = (Isn×sn − h(A⊗ In×n)Fsn×sn)
−1 h(A⊗ In×n)Fsn×sn

 Ψ0
...

Ψ0

 . (IV.14)

1The proof follows by means of a fixed point argument, controlling h in order to obtain a contraction
over g := (g1, . . . , gs) and finalizing using Banach’s fixed point theorem. One can also prove that the
increment operator is smooth as a consequence of the implicit function theorem.
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We are still left with the issue of computing the update Ψ1. The difficulty lies in the
fact that the update equation (IV.8) is stated in terms of the quantities k`, instead of
Zi. This can be overcame with the following trick

Ψ1 = Ψ0 +
s

∑
i=1

diZi, where d = bT A−1. (IV.15)

This is easy to prove noting that

s

∑
i=1

diZi =
(

bT A−1 ⊗ I
)

Z =
(

bT A−1 ⊗ I
)

h(A⊗ I)

 F1
...

Fs


= h

(
bT A−1 · A

)
⊗ (I · I)

 F1
...

Fs


=

s

∑
i=1

biFi = Ψ1 −Ψ0.

Some small optimizations are in place when we look at the matrix (A⊗ In×n)Fsn×sn,
if fact A⊗ In×n has a nice sparse structure, even when A has arbitrary entries, and
we obtain

(A⊗ In×n)Fsn×sn =

 a11F1 · · · a1sFs
...

. . .
...

as1F1 · · · assFs

 , (IV.16)

saving some matrix multiplications in the computation of Z. This economy in each
iteration makes a considerable difference when the dimension of problem (TP) grows.

Another alternative to the update scheme presented here would be to turn the
matrix ODE (IV.7) and turn it into a big vector valued problem, of size N(N + 1)
where N is the number of states in X. However, the approach we have presented
takes greater advantage of the nonlinear system solvers that need to be implemented
inside a RK algorithm to solve (IV.9). If those were to be applied to the vector valued
variant, the nonlinear solver would take into account the variables coming from the
variational ODE as well. The issue lies in the fact that although the RK methods for
this part of the ODE can be computed directly as linear systems, this information
is lost in the internal Newton loop necessary to solve the system (IV.9). This makes
each iteration of the nonlinear solver much more costly, having to perform multipli-
cations with matrices of size N(N + 1), instead of N. We still need to solve the linear
system (IV.13), however this is done only once on each time step.

In practice we have observed that the vector valued approach to solve (IV.7) takes
more steps with the adaptive step size algorithms, but one can expect more preci-
sion since the adaptive step size also takes the variational system into account. This
lack of precision in the approach here presented could lead to slightly more impre-
cise estimates for the derivative of the Shooting function, further investigations are
required in this direction.

Finally, to summarize our scheme, given an estimate Xk for the states at time tk,
we use an adaptive-step algorithm to find the optimal step hk and the estimate Xk+1
for the states at time tk+1 = tk + hk

Xk 7→ (Xk+1, hk),
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where this mapping is defined by the specific RK scheme chosen. Afterwards, we
need to compute the quantities F1, . . . , Fs. This is done using a fixed step size iteration
of the same RK method to compute estimates for X(tk + cihk). Notice that this step is
parallelizable, since we can use Xk as initial condition for all of those computations.
Afterwards it is just a matter of making the s function evaluations

Fi = DF(tk + cihk, X(tk + cihk)), for i = 1, . . . , s.

This discussion is summarized in Algorithm 1.

Algorithm 1: Variational Integrator
Data: t0, T, (A, b, c), X0
Result: Estimatives for X(T), Ψ(T)
Compute d = bT A−1;
tk, Xk, Ψk ← t0, X0, Ψ0;
while tk < T do

Compute Xk+1 with RK(A, b, c) using initial condition Xk;
for i = 1 . . . , s do

Compute X(tk + cihk) with fixed step cihk and initial condition Xk;
Fi ← DxF(tk + cihk, X(tk + cihk));

Obtain Z =

 Z1
...

Zs

 with equation (IV.14);

Update Ψk+1 = Ψk +
s

∑
i=1

diZi;

end
Avance time step tk+1 ← tk + hk;

end

IV.1.3 Summing Up the Algorithm

Now we can gather all the steps discussed previously. The implementation was
done in Python [46, 47]. Apart from the standard tools, we have chosen symengine,
[16] as our CAS to perform the symbolic computations. The alternative was sympy,
Python’s standard package for symbolic computations. The problem is that the latter
is implemented in pure Python, making the computations much slower than the
former, which is implemented in C++.

For the numerical integration, we have used the pygsl package [27], a wrapper
to the well-established General Scientific Library of the C programming language.
We have used the Gauss collocation methods from Table I.1 since they coincide with
their corresponding Partitioned Runge-Kutta methods, as discussed in Section I.3.3.
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All of the examples discussed on this thesis can be found on the link.

Algorithm 2: Shooting Algorithm

Data: Inicial guess for ν, tolerance ε, arcs (ωk)
N
k=1

Result:
Obtain (ωk)

N
k=1 7→ F symbolically with (IV.6);

Symbolically differentiate F to get DF;
Obtain S ;
while ‖S(ν)‖ > ε do

X0 ← ν(1 : 2nN + N − 1);
β← ν(−dβ : end);
Integrate the system

Ẋ = F(X), X(0) = X0,
Ψ̇ = DX F(X) ·Ψ, Ψ(0) = I2nN×2nN

using Algorithm 1, obtain (X(1), Ψ(1));
Compute S(ν) = T (X0, X(1), β);

Compute S ′(ν) =
(

∂T
∂X0

+
∂T
∂X1
·Ψ(1)

∂T
∂β

)
;

∆← −
(
S ′(ν)TS ′(ν)

)−1 S ′(ν)TS(ν);
ν← ν + ∆;

end

IV.2 Examples

IV.2.1 Degenerate Linear Quadratic Problem

In this section we check the sufficient optimality conditions for a toy problem. We
consider the following partially affine example, inspired by the examples in [19, 2].

minimize −2x2(2) +
∫ 2

0

(
x2

1 + x2
2 + u2 + 10x2v

)
dt

subject to ẋ1 = x2 + u,
ẋ2 = v,
0 ≤ v(t) ≤ 0.5, a.e. on [0, T]
x1(T) = 1
x1(0) = x2(0) = 0.

(IV.17)

We start by obtaining an estimate for the optimal control structure. This was
done by using the BOCOP package [12], where we obtained that the optimal solution
presents a Bang, Singular, Bang structure. This way, the transformed problem (TP),

https://github.com/jmmachado/The-Shooting-Algorithm-for-Partially-Affine-Control
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in the Mayer form, becomes

minimize x3,3(1)− 2x3,2(1)
subject to ẋ1,1 = (T1 − T0) (x1,2 + u1) ,

ẋ1,2 = (T1 − T0) 0.5,
ẋ1,3 = (T1 − T0)

(
x2

1,1 + x2
1,2 + u2

1 + 5x1,2

)
,

ẋ2,1 = (T2 − T1) (x2,2 + u2) ,
ẋ2,2 = (T2 − T1) (v) ,
ẋ2,3 = (T2 − T1)

(
x2

2,1 + x2
2,2 + u2

2 + 10x2,2v
)

,
ẋ3,1 = (2− T2) (x3,2 + u3) ,
ẋ3,2 = 0,
ẋ3,3 = (2− T2)

(
x2

3,1 + x2
3,2 + u2

3

)
,

Ṫi = 0, i = 1, 2
x1,3(1) = 1
x1,1(0) = x1,2(0) = x1,3(0) = 0,
xi+1,j(0) = xi,j(1), i, j = 1, · · · , 3.

(IV.18)

Here the state variable xi,j indicates arc i and state index j. We have changed the
superscript notation for the arc index to avoid confusion with exponents. We make
a slight abuse of notation defining the variables:

X =
(
(xi,j)i,j=1,··· ,3

)
, (Ti)i=1,2 , U = (ui)i=1,··· ,3 , V = v (IV.19)

Moving on to computing Ω̃P2 , we first note that we only need to evaluate it in
the cone of critical directions. Consider (ξ̃, ũ, ỹ) in P2, the Goh transform of the
linearized dynamics, satisfying (II.52). First note that we can partition ξ̃ as ξ̃ =(
(ξk)

3
k=1, ξT

)
, where the terms ξT are the transformed variables corresponding to the

switching times, and therefore are constant and equal to zero, since each Tk has null
dynamics. The same happens for the transformed variation ξ̃2,2. Therefore, writing
each term of the quadratic form Ω̃P2 , we obtain

ξ̃T H̃xx ξ̃ =
3

∑
k=1

2(Tk − Tk−1)
(

ξ2
k,1 + ξ2

k,2

)
, 2ũT H̃uxξ = 0 (IV.20)

2ỹT M̃ξ̃ = 4(T2 − T1)
2ỹξ̃2,2, ũT H̃uuũ =

3

∑
k=1

2(Tk − Tk−1)u2
k (IV.21)

2ỹT Ẽũ = 0, ỹT Rỹ = (T2 − T1)
32ỹ2, g

(
ξ̃(0), ξ̃(1), h

)
= 10

(
2hξ̃3,2(1) + h2

)
(IV.22)

Finally, recalling that ξ̃3,2 = 0, Ω̃P2 assumes the form

Ω̃P2 =
∫ 1

0

(
3

∑
k=1

2(Tk − Tk−1)
(

ξ2
k,1 + ξ2

k,2 + u2
k

)
+4(T2 − T1)

2ỹξ̃2,2 + 2(T2 − T1)
3ỹ2
)

dt + 10h2.

Completing squares for the cross term ỹξ̃2,2, we can find some positive constant
C, depending on the switching times, such that

Ω̃P2 ≥ 10h2 + C
∫ 1

0

(
ỹ2 +

3

∑
k=1

u2
k

)
dt. (IV.23)
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The coercivity is proven, so that we have verified the sufficient condition from The-
orem II.3.7. Figure IV.1 shows a comparison the solutions of our shooting algorithm
and the one obtained from BOCOP. BOCOPS’s solution already shows a good ap-
proximation of the singular control, however it has poor performance around the
switching times. Another interesting numerical phenomenon is the fact that, gen-
erally in direct methods, the control variables have a tendency to have a slower
convergence than the states and costates variables [28]. This can be observed in the
comparison graph of the nonlinear controls. Since the shooting algorithm uses the
analytical expression of the optimal controls, we can expect more accurate results.
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FIGURE IV.1: Optimal trajectories and controls for problem (IV.17)

IV.2.2 Optimal Control of an SIRS Epidemiological Model

In this section we follow [22, 35] where the authors discuss problems regarding the
optimal control of various SIR models used to describe the spread of an epidemic
in some demographic population. The control is performed through a term v mod-
eling vaccination of susceptible individuals S, leading them to the recovered class
R before they enter the infected class I, and the treatment of infected individuals
is represented by a second control variable u. We consider the variation known as
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SIRS model, which takes into account the effect of temporary immunity of recov-
ered individuals, gradually reintroducing them into the susceptible class. This brief
discussion is encapsulated in (IV.24) below:

Ṅ = F(N)− δI − µN
Ṡ = F(N)− β IS

N − vS + ω(N − S− I)− µS
İ = β IS

N − (γ + δ + u)I − µI,
(IV.24)

In equation (IV.24), instead of using the traditional states S, I, R, we introduce the
total number of individuals in the population, N = S + I + R. Working with such
variables simplifies the computations, as done in [22, 35]. The function F : [0, K) →
R+ is the population growth function. We assume the logistic growth model, i.e.
F(N) = αN(1− N/K) and that all newborn individuals enter the susceptible class.

Our goal is to minimize the amount of ill individuals with the lowest cost of
vaccination and treatment over a time window, hence we choose the following cost
function ∫ T

0

(
B1 I(t) + B2v(t) + B3u2(t)

)
dt (IV.25)

The choice of terms B1 I and B3u2 follows [22], the integral of the former is pro-
portional to the total amount of deaths due to the disease, while the former is chosen
to model the difficulty of public health agents to implement treatment strategies to
a wide portion of the population. Vaccination on the other hand is more easily im-
plemented and hence appears linearly in the cost as in [35]. The linear dependence
on the vaccination might result in bang-bang optimal controls as in [8], however the
parameters values in Table IV.1 were chosen to favor the appearance of singular arcs
among realistic parameters given in [22].

Parameter Biological Meaning Values
N0 initial total population 5000 humans
S0 initial susceptible population 4500 humans
I0 initial infected population 499 humans
α population growth rate 4.10−5 / day
K carrying capacity 5000
µ natural death rate of population 10−5 / day
β incidence rate 0.5 / day
ω waning rate 0.01 / day
γ infection time 0.1 / day
δ death rate due to disease 0.1 / day

B1 cost per death 1
B2 cost per vaccination 50
B3 cost per treatment 1000

vmax maximum vaccination rate 0.25
T period of analysis 100 days

TABLE IV.1: Biologically feasible parameters.
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Now we introduce the optimal control problem in Mayer form

minimize C(T)
subject to Ṅ = F(N)− δI − µN,

Ṡ = F(N)− β IS
N − vS + ω(N − S− I)− µS,

İ = β IS
N − (γ + δ + u)I − µI,

Ċ = B1 I + B2v + B3u2,
0 ≤ v(t) ≤ vmax, a.e. on [0, T]
0 ≤ u(t), a.e. on [0, T]
N(0) = N0, S(0) = S0, I(0) = I0, C(0) = 0.

(IV.26)

We will show that the restriction of non negativity on the nonlinear controls is
redundant, since a “negative treatment” is never optimal. This is intuitive since
negative treatment values would introduce more infected individuals to the overall
population, and therefore increase the cost.

Proposition IV.2.1. An optimal treatment strategy (û, v̂) for problem (IV.26) will never
present negative values for û.

Proof. Suppose an optimal solution (û, v̂) is such that û(t) presents negative values
in a measurable set. Define a new control strategy, where v̂ remains unchanged
and exchange û by ũ := max{ū, 0}. The cost associated with v̂ is unaffected, the
term depending on the treatment,

∫ T
0 u2(s)ds, is clearly less expensive for u0 and

it remains to be checked the influence on the cost associated with the amount of
infected individuals of this strategy.

With this in mind, let (N, S, I) and (Ñ, S̃, Ĩ) be the solutions for (IV.24) with the
control strategies (û, v̂) and (ũ, v̂), respectively. To conclude our argument, it suffices
to show that the quantity z := Ĩ − I is non positive. Note that

ż = ˙̃I − İ = β Ĩ
S̃
Ñ
− βI

S
N
− (γ + δ + µ)( Ĩ − I) + ûIχ{û<0}.

Hence, we can define a continuous function c(t), depending on S̃, Ñ, S, N, such that

ż ≤
(

βc(t)−
(
γ + δ + µ + ûξ{û>0}

))
z + ûIχ{û<0}.

Setting a(t) := βc(t)−
(
γ + δ + µ + ûχ{û>0}

)
and b(t) := ûIχ{û<0}, by Gronwall’s

lemma, we have that

z(t) ≤ z(0) exp
(∫ t

0
a(s)ds

)
+
∫ t

0
b(s) exp

(∫ s

0
a(σ)dσ

)
ds.

By definition, z(0) = 0 and b ≤ 0, thus z ≤ 0, this is Ĩ ≤ I.

With the aid of the previous Proposition IV.2.1, our control problem (IV.26) satis-
fies all assumptions from Section III.3, since the constraints u ≥ 0 can be removed,
and we can apply our algorithm. The singular vaccination strategies are obtained
using the expression for Ḧv derived in (II.37). The complete analytical computation
can be found in appendix B, however, our computational implementation relies on
SymEngine - a Computer Algebra System (CAS), see [16] - to automate this laborious
task and other computations necessary to formulate our algorithm.

We employed the shooting algorithm proposed in the present work to solve the
optimal control problem (IV.26). As before, we used the BOCOP software [12] to get
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an estimate of the shooting parameters and initialize our algorithm. The results are
shown in Figures IV.2 and IV.3.

0 20 40 60 80 100

4982.5

4985.0

4987.5

4990.0

4992.5

4995.0

4997.5

5000.0 total population

0 20 40 60 80 100

0

1000

2000

3000

4000

susceptible population
infected population
recovered population
cost

0 20 40 60 80 100

−0.2

−0.1

0.0

0.1

0.2

pN

pS

0 20 40 60 80 100

0

10

20

30

40

50

60

70
pI

FIGURE IV.2: Optimal trajectories for problem (IV.26).

0 20 40 60 80 100
−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

Vaccination

BOCOP solution
Shooting solution
Hv

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Treatment

BOCOP solution
Shooting solution

FIGURE IV.3: Optimal controls for problem (IV.26).
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V
Conclusion

In this work we have studied the shooting algorithm for partially affine control prob-
lems, problems in which some of the control components appear linearly in the
Hamiltonian and others do not. Our analysis was focused on the theoretical con-
vergence of the algorithm and in its practical implementation.

Concerning the convergence, the difficulties were twofold: first the usual strate-
gies to prove the convergence of such algorithms in the literature consist in assume
the coercivity of the second variation. However, this variation with respect to the
linear controls vanishes, making the usual second order optimality conditions non
informative. This has been overcome with the use of the Goh transform that en-
ables the derivation of more informative second order conditions. The second dif-
ficulty was in obtaining convergence results for control constrained problems. The
derivation of second order sufficient conditions for such problems is still an open
question, hence an analogous approach to the proof of convergence given in the
unconstrained case becomes unfeasible. The method used in the present work to
overcome this issue was to assemble a transformed unconstrained problem, whose
solution is equivalent to the solution of a prescribed constrained one.

Regarding our implementation, the same transformed problem is the main source
of difficulties. From one side, it is desirable that the programming interface to the
end user does not requires much more than the modeling of the system in question
and the criteria for optimality, e.g. cost function and constraints. From the other
side, as we have discussed, tackling a constrained problem directly presents many
complications for the shooting algorithm. Hence, the main goal of our implemen-
tation was to automate the step of assembling the transformed problem. This and
the lengthy calculations of singular controls was achieved with symbolic computa-
tions. Our implementation was thoroughly tested in the various examples presented
throughout the text.
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A
On the Gauss-Newton Method

In this appendix we further discuss the formulation and convergence properties of
the Gauss-Newton method. Even thought we have chosen a notation that is con-
sistent with our purposes of finding the roots of the shooting function, the analysis
here is applicable to any problem were the Gauss-Newton method is suitable. For
simplicity we allow the abuse of notation that S : Rn → Rm. The reader is advised
not to mistake n and m with the dimensions of the states and nonlinear controls.

We remind that our primal objective is to solve

S(ν̂) = 0. (A.1)

Such problem is equivalent to solving the optimization problem

min
ν∈D(S)

|S(ν)|2 . (A.2)

First order conditions of optimality for this convex problem make (A.1) and (A.2)
equivalent. In turn we make updates in the approximations of the solutions as
νk+1 = νk + ∆k where ∆k is the solution of the least squares problem

min
∆∈D(S)

∣∣S(νk) + S ′(νk)∆
∣∣2 . (A.3)

That is an interactive approach to solve (A.2) done by means of a first order Taylor
approximations at each step. While ∆k can be expressed as the solution of

S′(νk)
TS′(νk)∆k + S′(νk)

TS(νk) = 0, (A.4)

and explicitly written provided that S′(νk)
TS′(νk) is invertible, we shall still have

some error at each approximation that comes from the truncation of the residual
terms from the Taylor expansion. Since there are various estimates of such error
depending on the regularity of the objective function, we can also have different
speeds of convergence depending on such regularity. This discussion is formalized
in the following theorem.

Theorem A.0.1 (Gauss-Newton convergence). Let ν̂ be a solution of problem (A.1), such
that the matrix S ′(ν̂)TS ′(ν̂) is nonsingular. Consider also the sequence (νk)k∈N defined as
in (A.3), such that ν0 is chosen sufficiently close to the solution so that S ′(ν0)TS ′(ν0) is also
non singular. Then the Gauss Newton method converges at least linearly. Moreover, in case
the function S′ : Rn → Rm×n is Lipschitz continuous, quadratic convergence holds.
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Proof. We define εk := νk − ν̂, the error of each approximation of the solution using
the Gauss Newton method. Consider the following first order Taylor expansion of
the objective function

S(νk + h) = S(νk) + S ′(νk) · h + r(h), (A.5)

where r is the residual of the Taylor expansion. We choose h = −εk so that the left
side of (A.5) vanishes, since it is evaluated at the solution. We obtain

S(νk)− S ′(νk) · εk + r(−εk) = 0. (A.6)

Multiplying both sides by S ′(νk)
T and using the definition of ∆k in (A.4), we can

write
εk + ∆k =

(
S ′(νk)

TS ′(νk)
)−1

r(−εk), (A.7)

since we assumed the sequence to be close enough to ν̂ so that, for each element of
the sequence, the inverse is well-defined and bounded. We call the reader’s attention
to the fact that εk + ∆k = εk+1 and turn to the analysis of the term r(εk). If we
consider the derivative S ′ to be Lipschitz continuous, then it is useful to write the
residual term as

r(−εk) =
∫ 1

0

[
S ′(ν̂ + tεk)− S ′(ν̂)

]
· εkdt. (A.8)

It suffices to add (A.8) to (A.5) in order to check this characterization for the residual.
This leads to the following estimate

|r(−εk)| ≤
∣∣∣∣∫ 1

0

(
S ′(νk + tεk)− S ′(ν̂ + tεk)

)
dt
∣∣∣∣ |εk| = O

(
|εk|2

)
. (A.9)

The last equality is valid given that S ′(·) is Lipschitz. Therefore, we have |εk+1| =
O
(
|εk|2

)
and there exists some constant c > 0 that satisfies

|εk+1| ≤ c|εk|2. (A.10)

If the initial approximation is chosen close enough so that |ε0| = |ν0− ν̂| < ε

c
, where

0 < ε < 1, then we can easily show with finite induction that

|εk| ≤
ε2k

c
, (A.11)

proving that the sequence (νk)k∈N converges quadratically to ν̂.
When we drop the assumption on S ′ being Lipschitz continuous, through the

same analysis of the Taylor expansion of the objective function, the residual is of the
form r(|εk|) = o(|εk|) and we write

|εk+1| = |εk|ρ(|εk|), (A.12)

where the function ρ(|εk|) approaches zero whenever |εk| → 0. So, given some
0 < ε < 1, there exists some δ > 0 such that when |ε0| < δ, we have that |ε1| < ε|ε0|.

Proceeding inductively, we check that |εk| < ε|εk−1|, since ε < 1, and our induc-
tion hypothesis holds |εk| < |ε0| < δ, implying that ρ(|εk|) < ε. With (A.12), this
gives the estimate

|εk| < εk|ε0|, (A.13)
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proving the linear convergence.

Remark A.0.2. In the Chapter III the assumptions of this theorem, for the conver-
gence of the Gauss-Newton method are implied since the derivative of the shooting
function is one-to-one. This implies that

S ′(νk)
TS ′(νk)ν̄ = 0

if, and only if, ν̄ is the null vector and hence S ′(νk)
TS ′(νk) is nonsingular.
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B
Computations of Singular Arcs for Optimal

Control of SIRS System

In this appendix we expose the computations of the singular vaccination strategies
from Section IV.2.2 in full detail. To shorten notation, we define the state vector
x := (N, S, I, C)T and rewrite the dynamics as

ẋ = f0(x, u) + v f1(x) (B.1)

where

f0(x, u) =


F(N)− δI − µN
F(N)− β IS

N + ωR− µS
β IS

N − (δ + γ + u + µ)I
B1 I + B3u2

 , f1(x) =


0
−S
0
B2

 (B.2)

Following the arguments from Section II.2, the singular arcs for the linear con-
trols, i.e. vaccination, satisfy the following expression

γ01 + vsingγ11 = 0. (B.3)

Let us compute the quantities γ01 and γ11, as defined in (II.37). Initially note that

D f0 =


F′(N) 0 −δ 0

F′(N) + ω + β SI
N2 −ω− β I

N −ω− β S
N 0

−β SI
N2

I
N β S

N − (δ + γ + u + µ) 0
0 0 B1 0

 ,

D f1 =


0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 .

In order to compute γ01 and γ11, we start with the Lie bracket [ f0, f1]:

[ f0, f1] = D f1 f0 − D f0 f1 =


0

− (F(N) + ω(N − I))
β SI

N
0

 .

Notice that [ f0, f1] does not depend on the nonlinear control u, hence the expressions
for γ01 and γ11 become p · [ f0, [ f0, f1]] and p · [ f1, [ f0, f1]], respectively. Computing
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p · [ f1, [ f0, f1]] we obtain

[ f1, [ f0, f1]] = D[ f0, f1] f1 − D f1[ f0, f1]

=


0 0 0 0

−F′(N)−ω 0 ω 0
−β SI

N2 β I
N β S

N 0
0 0 0 0




0
−S
0
B2



−


0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0




0
− (F(N) + ω(N − I))

β SI
N

0



=


0
0
−β SI

N
0

−


0
F(N) + ω(N − I)

0
0

 = −2


0
0

β SI
N

0

+ [ f0, f1].

Using the Goh conditions (II.2.3) and the fact that Ḣv = 0, we obtain

γ11 = p · [ f1, [ f0, f1]] = −2β
SIpI

N
. (B.4)

Moving on to [ f0, [ f0, f1]], after some algebraic simplifications, we have

[ f0, [ f0, f1]] = D[ f0, f1] f0 − D f0[ f0, f1]

=


0 0 0 0

−F′(N)−ω 0 ω 0
−β SI

N2 β I
N β S

N 0
0 0 0 0




F(N)− δI − µN
F(N)− β IS

N + ωR− µS
β IS

N − (δ + γ + u + µ)I
B1 I + B3τ2



−


F′(N) 0 −δ 0

F′(N) + ω + β SI
N2 −ω− β I

N −ω− β S
N 0

−β SI
N2

I
N β S

N − (δ + γ + u + µ) 0
0 0 B1 0

 [ f0, f1]

= β
SI
N

w1 + w2 +

(
β

I
N

+ ω

)
[ f1, [ f0, f1]],

where the vectors w1 and w2 are given by

w1 :=


δ

2ω + β S
N

−(F(N)− δI)/N + 2β I
N

pI
pS

−B1

 ,

w2 :=


0

−(F′(N) + ω)(F(N)− δI)−ωI(δ + γ + u)
0
0

 .

Notice the appearance of the term [ f1, [ f0, f1]], simplifies the final expression of the
singular controls since this term cancels out with the denominator γ11. Hence the
expression for the singular control becomes

vsing = −γ01

γ11
= −

(
ω + β

I
N

)
+

p
2pI
·
(

w1 +
N

βSI
w2

)
. (B.5)
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