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Abstract. By employing the recently obtained sharp stability versions of the Prékopa–Leindler
inequality, we are able to obtain a sharp quantitative stability version for the Brascamp–Lieb
inequality, as well as several different results on the stability of moment measures.

As main features of our results, we highlight the independence of the stability constant for
the Brascamp–Lieb inequality on the convex function considered, a completely novel feature. In
the realm of moment measures, we highlight in the same vein that the stability results obtained
are uniform, which we expect to be particularly valuable not only from a purely mathematical
point of view, but also for applications.
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1. Introduction

In recent years, the fields of calculus of variations and functional inequalities have become
deeply interwined. If from one hand, many of the inequalities used in analysis and probability
have deep variational interpretations, functional and geometric inequalities are fundamental in
the study of many variational problems. To name a few exemples we can cite the use of Sobolev
type inequalities in the stability of matter [LS10,Lew22], the use of isoperimetric type inequalities
in the study of shape optimization problems [LLR25], and more recently the use of Brascamp-
Lieb [BL76] and Prékopa-Leindler inequalities [Pré71,Pre73,Lei73] has become fundamental on
the quantitative stability theory of optimal transport [DM23,LM24,Let25].

In the present work, we study the quantitative stability of the Brascamp-Lieb inequality and of
moment measures – as in, for instance, [BL76,CEK15,San16] – and their deep connections. In-
deed, that connection has not only been made rigorous several times over (see for instance [Kla14]
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where a regularity theory for moment measures is combined with a suitable Brascamp-Lieb in-
equality to obtain bounds on a Poincaré constant [KL25]), but they also have a common denom-
inator in optimal transport theory ; see [San15,Vil09,ABS21].

More specifically, the Brascamp-Lieb inequality is not only ubiquitous in the modern stability
theory of optimal transport, but it can also be derived with linearization arguments of trans-
portation type inequalities, as done for example in [CE17]. On the other hand, in [San16] it has
been showcased how to obtain moment measures with the minimization of functionals coming
from optimal transport.

By relying on the recent advances in the quantitative stability of the Prékopa-Leindler in-
equality in a series of recent works [BFR23,FR24,BFR25,FvHT25], we are able to obtain both
a sharp stability version of the Brascamp-Lieb variance inequality and novel explicit stability
estimates for moment measures. In spite of the fact that both objects can be studied from many
different perspectives, a common theme between them is that both can be approached from the
viewpoint of the Prékopa-Leindler inequality.

Indeed, we mention, for instance, the classical work [BL00] where a proof of Brascamp-Lieb’s
variance inequality with a linearization argument using Prékopa-Leindler is provided, as well
as [CEK15] (or Section 2.2 below), where a variational approach for moment measures is demon-
strated, consisting on the maximization of a functional which is proven to be concave with the
same functional inequality.

1.1. Stability of the Brascamp-Lieb variance inequality. In order to describe our main
contributions, let us first recall the Brascamp-Lieb variance inequality [BL76, BL00]: given a
convex function φ : Rd → R, let ϱ ∝ e−φ be its associated Gibbs measure. Then for every
sufficiently smooth function f , the following quantity

(1.1) δBL(f)
def.
=

ˆ
Rd

〈
(D2φ)−1∇f,∇f

〉
dϱ−Varϱ(f) ≥ 0

is non-negative. It is well known that the optimal functions for such inequality – which make
δBL(f) vanish – are the affine functions on the geometry induced by the log-concave measure ϱ,
i.e. f(x) = a · ∇φ(x) + b; see for instance [CE17] or the derivation at the start of Section 3.

Given the characterization of the optimizers of a functional inequality, the question of stability
consists of: under which topology can we estimate the distance of f to the manifold of optimizers?

Results of this type have increasingly gained importance over the past two decades. Indeed,
the question of stability has been extensively studied in the case of the isoperimetric inequality
[FMP08,FMP10], as well as in other geometric inequalities such as the Faber-Krahn inequality
[BDPV15], and, more recently, in [FMP10,FJ17,FvHT23,FvHT24,vHST21,vHST23] the Brunn-
Minkowski inequality, in [DT16, DEF+25, BK25] for Sobolev and log-Sobolev inequalities and
relations with non-linear evolution equations, in [BFR23,FvHT25,FR24] for the Prékopa-Leindler
and Borell-Brascamp-Lieb inequalities.

In that vein, our first main contribution is a sharp L1−based stability estimate for the Brascamp-
Lieb variance inequality. In order to state it, we define the finite dimensional manifold of optimal
functions

(1.2) OBL
def.
= {f : Rd → R : f(x) = a · ∇φ(x) + b, for some a ∈ Rd, b ∈ R}.

Clearly, if f ∈ OBL, then the parameter b must be given by Eϱφf since

Eϱφf =

ˆ
Rd

fdϱφ = a ·
ˆ
Rd

∇φ(x)e−φdx+ b = a ·
ˆ
Rd

∇(e−φ)dx+ b = b.

Our first main result must then be an estimate of the distance of a function f to the manifold
of optimizers

(1.3) distL1(ϱφ)(f,OBL)
def.
= inf

g∈OBL
∥f − g∥L1(ϱφ)

= inf
a∈Rd

∥∥f − (a · ∇φ+ Eϱφf)
∥∥
L1(ϱφ)

,

in terms of the deficit of the Brascamp-Lieb inequality:
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Theorem 1.1. Let φ : Rd → R ∪ {+∞} be an essentially continuous and convex function, and´
Rd e

−φ < +∞ so that the Gibbs mesuare ϱφ is well defined as in (1.4).
Then, there exists a universal constant Cd depending only on the ambient dimension such that

distL1(ϱφ)(f,OBL) ≤ CdδBL(f)
1/2

for all locally Lipschitz functions f ∈ L2(ϱφ).

As the classical Brascamp-Lieb is independent of the dimension, the first efforts in the lit-
erature into improving it were focused on next order terms that would exploit the ambient
dimension [Har08,BGG18]. These results are equivalent with bounding the deficit from below
with a dimensional term which vanishes in the manifold of optimizers for this inequality. A
similar improvement was also obtained in [CE17], by measuring the distance to the manifold of
optimal functions with a L2 term in a geometry that compensates for the curvature induced by
the potential V . This is very natural to expect for the Brascamp-Lieb inequality as it is closely
related to the spectral gap of the diffusion operator induced by ∇V that is central to the carré du
champ method [BÉ06,BGL13], see also Section 3. We refer the reader to [LLR25] for a particular
version for the Gaussian Poincaré inequality with relations to uncertainty principles.

It is worth pointing out that not only the present work is the first that proposes a quantitative
stability result for the Brascamp-Lieb variance inequality in full generality, but that the result is
sharp in terms of the dependence on δBL on the right-hand side, with constant independent of φ.
In particular, the independence of our stability results on the convex function provides us with
the perfect platform to apply Theorem 1.10 to deduce several novel results about the stability
of moment measures, as we shall see below.

Our method of proof will be based on the approach of Bobkov and Ledoux [BL00]. A main
new twist in our proof, however, is the usage of the newly developed sharp stability estimates
for the Prékopa-Leindler inequality stemming from the work of A. Figalli, P. van Hintum and
M. Tiba [FvHT25], together with a careful use of the geometry of the functionals involved in
order to conclude. This explains our result being stated in terms of the L1-topology, which is
natural viewing the Brascamp-Lieb inequality as a geometric inequality steaming from Brunn-
Minkowski’s.

1.2. Stabiliy for moment measures. Our next few results use the previous machinery to ob-
tain sharp quantitative stability results for moment measures. Using Prékopa-Leindler, we obtain
stability of the Gibbs measures in the moment measures representation, while the quantitative
version of Brascamp-Lieb yields stability of the potentials.

Given a convex function φ, we recall the notation of its associated Gibbs probability measure

(1.4) ϱφ
def.
=

e−φ´
Rd e−φ

.

On the other hand, given ψ also convex, which we will view informally as in the dual space of
variables of φ by frequently considering ψ = φ∗, we define the moment measure associated with
ψ as

(1.5) µψ
def.
= (∇ψ)♯ϱψ.

In [CEK15,San16], it was proven that for any measure µ ∈ P1(R), that is a Radon probability
measure over Rd with finite first moments, admits a moment measure representation, there exists
a convex and essentially continuous (see the definition in Section 2.2) potential ψµ such that (1.5)
holds. In addition, it is also unique up to translations. Using the Prékopa-Leindler inequality, it
was shown in [CEK15] that the moment measure of ψ is µ if and only if its Legendre transform
φ

def.
= ψ∗ is a maximizer of

(1.6) Jµ(φ)
def.
= log

ˆ
Rd

e−φ
∗
dx−

ˆ
Rd

φdµ.
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The same result was recovered in [San16] using optimal transport, but this time for a dual
perspective: a measure ϱ is the Gibbs measure in (1.5) if and only if it minimizes

(1.7) Eµ(ϱ)
def.
=

ˆ
Rd

log ϱ(x)dϱ(x) + T (ϱ, µ),

where T is the maximal correlation formulation of the quadratic optimal transport problem. The
reader is referred to Sections 2.1 and 2.2 for more details on optimal transport theory and for
general results on moment measures.

The quantitative stability question that we wish to answer then becomes: given two measures
µ, ν can we quantify the distance between either ψµ, ψν or between ϱµ, ϱν . Since the variational
characterization described above is necessary and sufficient, one can only expect to answer this
question as an estimate on the distance to the optimal sets defined as

(1.8) Mµ
def.
= argminEµ, Nµ

def.
= argmaxJµ,

which can be characterized as follows: fixed some reference ϱ0 ∈ Mµ and φ0 ∈ Nµ, the manifolds
of optimizers can be expressed as

(1.9)
Mµ = {ϱ0(· − x0) : x0 ∈ Rd},

Nµ = {φ0 + (a · x+ b) : a ∈ Rd, b ∈ R}.
We start with the following Theorem, which is a backbone to the stability results that will

follow. We hope it can be used to other purposes, such as deriving explicit convergence rates for
numerical algorithms for computing moment measures.

Theorem 1.2. Given a Radon measure µ ∈ P1(Rd) whose barycenter lies that the origin and
dim suppµ = d, let φ̄ be a maximizer of Jµ. Then for any convex function φ : Rd → R∪{+∞}
it holds that

(1.10) distL1(Rd) (ϱφ∗ ,Mµ) ≤ Cd(Jµ(φ̄)− Jµ(φ))
1/2.

In addition, there exists λ ∈ (0, 1/2) such that, setting v def.
= φ̄− φ and φλ

def.
= φ̄+ λv, it holds

that

(1.11) distL1(µλ) (φ,Nµ) ≤ Cd (Jµ(φ̄)− Jµ(φ))
1/2 ,

where µλ = µφ∗
λ

is the moment measure associated with the interpolation (φλ)
∗.

We note that this result may be regarded as a Polyak-Lojasiewicz type inequality for the
functional Jµ. More precisely, estimate (1.11) gives a way of using this functional to measure
the distance of any φ to the class of maximizers of Jµ. This is done by establishing a connection
between the equality case of the Brascamp-Lieb inequality and the invariance of the functional
Jµ with respect to the addition of affine functions. Estimate (4.1) relates the invariance of
the moment measure representation with respect to translations to the equality cases in the
Prékopa-Leindler inequality, estimating the distance of ϱφ∗ to the set of minimizers of Eµ.

In spite of the fact that Theorem 1.2 provides us, by itself, with a novel quantitative way to
show that almost maximizers of the functionals Jµ and Eµ must indeed converge to the original
potentials, we highlight that its true scope lies in the deeper applications to the theory of moment
measures it unveils, as pointed below.

Stability in a compact domain. Using Theorem 1.2, we are able to obtain several quantitative
stability results for moment measures in different contexts. When the moment measure and the
associated Gibbs measure in (1.5) are restricted to a compact domain we obtain a strong stability
result controlling the L1 distances between ϱµ, ϱν and φµ, φν with the 1-Wasserstein distance of
µ, ν; this is the content of Theorem 4.2.

In spite of the fact that compactness allows for a fairly simpler mathematical structure, di-
verging from the objects described by the existence theorem by [CEK15,San16], we remark that
such a result means a remarkable control especially for numerical applications, as we are able
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to control a strong norm with a distance which metrizes a fairly weak convergence of Radon
measures, see Section 2.1 for more details on these topologies.

Rates of convergence for quadratic regularization. The classical definition of moment measures
from (1.5) has strong motivations from convex and toric geometry [BB13], but variations thereof
have recently found several applications to sampling and generative models [VBC25]. For such
applications, the essential property of moment measures is their capacity of representing a given
measure via the pushforward of a log-concave distribution through the gradient of the same
convex convex potential.

This can also be achieved with the quadratically regularized moment measures recently pro-
posed in [DF25]. That is, given µ ∈ P1(Rd) there is a convex potential ψα such that

(1.12) µ = (∇ψα)♯ϱα, where ϱα ∝ e−(φα+
α
2
|·|2);

see also Section 2.2.
By introducing the quadratic regularization, the quantitative stability investigated in [DF25]

turns out to become a bit simplified for a few reasons: first, we mention that the uniqueness
modulo translations is replaced by simply uniqueness. This way, the quantitative stability can be
understood without the distance to a certain manifold of optimizers. Secondly, the regularization
makes the functional corresponding to (1.7) strongly geodesically convex in Wasserstein space.
On the other hand, the stability is formulated with the 2-Wasserstein distance.

For these reasons, both of theoretical and of applied nature, obtaining explicit rates of con-
vergence with respect to the regularization parameter is of great interest. This is achieved once
again by using Theorem 1.2.

Theorem 1.3. Fix a Radon µ ∈ P1(Rd) whose barycenter lies at the origin and such that
dim suppµ = d. Then there exists a constant Cd,µ depending on the ambient dimension and on
µ such that

(1.13) distL1(Rd) (ϱα,Mµ) ≤ Cd,µα
1/2,

for ϱα given in (1.12).
In addition, set φα

def.
= ψα, where ψα is given in (1.12). Then, for each α, there exists

λ ∈ (0, 1/2) such that, setting v def.
= φ− φα and φt

def.
= φ+ λv, it holds that

(1.14) distL1(µλ) (φα,Nµ) ≤ Cd,µα
1/2,

where µλ = µφ∗
λ

is the moment measure associated with the interpolation (φλ)
∗.

Stability in Rd. To tackle the stability question in Rd we can in principle combine the quanti-
tative stability of regularized moment measures arguments based on strong geodesic convexity
from [DF25] with our explicit rates of convergence 1.3. But, in order to achieve this, we have
to make quantitative the assumption that µ is not supported on a hyperplane, otherwise such a
result would allow the construction of a ψ yielding (1.5) for such a singular µ, contradicting the
existence theory of [CEK15,San16]. See Proposition 4.8 for more details on this construction.

Our approach is then to either impose a uniform lower bound on the geometric quantity

Θ(µ)
def.
= inf

θ∈Sd−1

ˆ
Rd

|θ · y|dµ(y) ≥ ϑ,

or to control the Hessian of the log-density of µ. This is done by defining the two classes

Kϑ
def.
=

{
µ ∈ P(Ω) :

µ is centered,
Θ(µ) ≥ ϑ

}
for a compact Ω,

KΛ
def.
=

{
µ ∈ Pac(Rd) :

µ ∝ e−V is centered,
D2V ≤ Λid

}
.

The results we obtain can be summarized as follows, where the reader is referred to Section 4.3
for more information.
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Theorem 1.4. Take K to be either Kϑ or KΛ. Then for each p > 2 there exists a constant C
such that, for all µ, ν ∈ K it holds thats

(1.15) distW2 (Mµ,Mν) ≤ CW2(µ, ν)
p−2
6p−4 ,

where C grows linearly in p.

In both cases, our approach is to control the moments of order p of the Gibbs measures ϱµ,
uniformly for all elements µ of the classes Kϑ and KΛ. With this finer information we can come
back to the strong geodesic convexity arguments for regularized moment measures from [DF25]
and obtain an optimal dependence on α in the quantitative stability results in this case. For
the first class Kϑ, this can be done with a Lemma 4.6 due to Klartag. For the class KΛ, similar
controls on the p-moments can be obtained with a regularity result of moment measures, namely

(1.16) µ ∝ e−V = (∇ψ)♯e
−ψ, such that D2V ≤ Λid, then ψ is Λ−1/3-strongly convex.

The proof of (1.16) is done in Theorem 4.11, and is based on a bootstrap argument using
Caffarelli’s contraction theorem [Caf92,Caf00]. It states that if µ is as in (1.16) and ν ∝ e−W

with D2W ≥ λid, then the optimal transportation map T from µ to ν is globally Lipschitz with
LipT ≤

√
Λ/λ. Since we cannot know in principle that ψ is strongly convex, what we do instead

is consider the quadratic regularized moment measure presentation of µ. In this case, the Gibbs
measure has indeed a strongly convex potential, with a modulus of convexity α. This modulus
of convexity can be iteratively increased with successive applications of the contraction theorem,
which yields Λ−1/3 at the end. Besides the application to the stability of moment measures, we
believe that this result might have important applications in sampling, see the discussion after
the proof of Theorem 4.11.
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2. Some tools on optimal transport and functional inequalities

2.1. A primer on optimal transport and Wasserstein distances. The Wasserstein dis-
tances are defined via the value function of the optimal transport problem as

(2.1) W p
p (µ, ν)

def.
= min

γ∈Π(µ,ν)

ˆ
Rd×Rd

|x− y|pdγ(x, y),

where Π(µ, ν) the set of probability measures over Rd × Rd whose marginals are respectively µ
and ν, the so called set o transportation plans. This quantity is finite if and only if µ and ν have
finite p-moments, Mp(µ),Mp(ν) < +∞, where

(2.2) Mp(µ)
def.
=

ˆ
Rd

|x|pdµ.

The reader is referred to [San15, Vil09] for a complete introduction to optimal transport and
Wasserstein distances, in what follows we introduce its properties that will be useful in the
sequel.
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We are particularly interested in the case p = 2, where the optimal transport problem 2.1
has a close relation with convex analysis. This can be easily seen by introducing the maximal
correlation formulation

(2.3) T (µ, ν) = sup
γ∈Π(µ,ν)

ˆ
Rd×Rd

⟨x, y⟩ dγ = inf
φ convex

ˆ
Rd

φdµ+

ˆ
Rd

φ∗dν,

in such a way that
1

2
W 2

2 (µ, ν) =
1

2
M2(µ) +

1

2
M2(ν)− T (µ, ν).

The infimum on the RHS is attained by a convex function φ, and Brenier’s Theorem states that
the optimal transportation plan is unique and given by γ = (id,∇φ)♯µ, whenever µ is absolutely
continuous w.r.t. the Lebesgue measure.

Topological properties of Wasserstein distances. A very important property of Wasserstein dis-
tances is that they metrize the narrow topology of probability measures. A sequence of Radon
probability measures (µn)n∈N converges narrowly to µ if for all f ∈ Cb(Rd), continuous and
bounded function, it holds that ˆ

Rd

fdµn −−−→
n→∞

ˆ
Rd

fdµ,

and we write µn −−−⇀
n→∞

µ. A very important property is that

(2.4) Wp(µn, µ) −−−→
n→∞

0 if and only if

µn −−−⇀
n→∞

µ,

Mp(µn) −−−→
n→∞

Mp(µ).

In addition, the space of Radon probability measures with finite p-moments Pp(Rd) becomes
itself complete and separable when endowed with the topology of Wp.

This is conceptually very important for the contributions of this work since many of the
quantitative stability results regarding moment measure representations from Section 4 are stated
with respect to the Wasserstein distance W2. This allows to compare very singular objects with
a weak topology. On the other hand, if we know that two probability measures are also in
L1(Rd) and have finite p-moments, then we can interpolate the Wasserstein distance with the
L1 distance via the following inequality.

Lemma 2.1. Let µ, ν be two probability densities in L1(Rd) with finite p-moments, for some
p > 1. Then, for all 1 ≤ q < p there exists a constant Cp,q such that

(2.5) Wq(µ, ν) ≤ Cp,q(Mp(µ) +Mp(ν))
1/p ∥µ− ν∥1/q−1/p

L1 .

Proof. Suppose that µ, ν have densities f, g, set ε def.
= ∥f − g∥L1(Rd), and define the common

density and the residuals fr, gr as

h(x)
def.
= min{f(x), g(x)} fr

def.
= f − h, gr

def.
= g − h.

As a result, we observe thatˆ
Rd

fr(x)dx+

ˆ
Rd

gr(x)dx = ε,

ˆ
Rd

fr(x)dx−
ˆ
Rd

gr(x)dx = 0.

so that
´
Rd fr(x)dx =

´
Rd gr(x)dx = ε/2.

Now, we can construct a transportation plan γ ∈ Π(µ, ν) as follows: we first transport the
common part of both densities via the identity map, and to transport the residuals we use the
product measure. More precisely, we set α def.

= ε/2 and

γ
def.
= (id, id)♯h+

1

α
fr(x)gr(y)dxdy.
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We then have

W q
q (µ, ν) ≤

ˆ
Rd×Rd

|x− y|qdγ(x, y) = 1

α

ˆ
Rd×Rd

|x− y|qfr(x)gr(y)dxdy︸ ︷︷ ︸
def.
= I

.

To estimate the RHS, we split the integral into two parts as

I = I1 + I2,

=

ˆ
BR×BR

|x− y|qfr(x)gr(y)dxdy +
ˆ
(BR×BR)c

|x− y|qfr(x)gr(y)dxdy.

The first term can be easily estimated as

I1 ≤ (2R)qα2,

while the second can be estimated as with the p-moments, for any p > q by noticing that for
|x| > R we have |x|q ≤ Rq−p|x|p, so that

I2 ≤ 2q−1α

ˆ
|x|≥R

|x|qfr(x)dx+ 2q−1α

ˆ
|y|≥R

|y|qgr(y)dy

≤ 2q−1Rq−pα (Mp(µ) +Mp(ν)) .

Combining both estimates, we obtain

W q
q (µ, ν) ≤ (2R)qα+ 2q−1Rq−p (Mp(µ) +Mp(ν)) .

Optimizing in R > 0 gives the desired result. □

Geodesic convexity in Wasserstein spaces. Given two probability measures µ0, µ1 ∈ Pp(Rd), any
optimal transportation plan γ yields a natural interpolation between then given by

µt
def.
= πt♯γ, where πt(x, y) = (1− t)x+ ty, t ∈ [0, 1].

It turns out that this interpolation is a constant speed geodesic in the metric space (Pp(Rd),Wp),
see [ABS21,San15,Vil09] for details.

This allows to define the notion of geodesic convexity for functionals defined over Wasserstein
spaces. A functional F : Pp(Rd) → R ∪ {+∞} is said to be geodesically convex if for every
µ0, µ1 ∈ Pp(Rd) and any geodesic interpolation µt between them the function t 7→ F (µt) is
convex in the classical sense. It is strictly geodesically convex if the same function is strictly
convex.

The 2-Wasserstein distance is not itself geodesically convex, this is a feature of the geometry
of the Wasserstein space, see [AGS08, Chapter 9]. In fact, it satisfies the opposite inequality.
In [San16, Propositon 3.3], Santambrogio exploited this fact to show the geodesic convexity of
the maximal correlation functional ϱ 7→ T (ϱ, µ). This fact is at the heart of the study of moment
measures via optimal transport, as well as the geodesic convexity of the entropy functional defined
as

(2.6) H(ϱ)
def.
=


ˆ
Rd

log ϱdϱ, if ϱ≪ L d,

+∞, otherwise,

which follows from McCann’s criterion [McC97]1.
Another important example of geodesically convex functionals are the p-moments, µ 7→Mp(µ),

this follows directly from the convexity of x 7→ |x|p, see [San15, Chapter 7]. In fact, it is easy

1And seems to be equivalent ot the Prékopa-Leindler inequality [Pré71,Lei73].
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to see that the second moment M2 is even strongly geodesically convex, that is, for any geodesic
interpolation µt between µ0 and µ1 it holds that

(2.7) M2(µt) ≤ (1− t)M2(µ0) + tM2(µ1)−
1

2
t(1− t)W 2

2 (µ0, µ1).

This property is particularly useful to derive quantitative stability results for minimizers, as done
in [DF25] and will be exploited here.

2.2. General facts on moment measures. In [CEK15], Cordero-Eurasquin and Klartag gave
a complete characterization of the measures µ which admit a meaningful moment measure rep-
resentation. Their analysis goes through the functionals defined as in (1.6)

They identified that if the potential ψ in (1.5) does not satisfy certain regularity properties,
its moment measure can loose a lot of information. They shed some light on this issue with the
following example: take y ∈ Rd, a convex body C ⊂ Rd and consider

ψ(x)
def.
=

{
x · y, x ∈ C

+∞, otherwise.

Then one can readily check that µψ = δy, which does not give much information on the measure
δy, and certainly is not amenable to a quantitative stability result since one can drastically
change the convex set C and obtain the same moment measure. For this reason they focus
on characterizing measures that admit a moment measure representation with an essentially
continuous and convex function.

Definition 2.2. A convex function ψ : Rd → R∪ {+∞} is said to be essentially continuous if it
is lower semi-continuous and the set of points where it is discontinuous has zero H d−1 measure.

Lemma 2.3 ([CEK15]). Let ψ be a convex and essentially continuous function such that 0 <´
Rd e

−ψ < +∞, and such that 0 <
´
Rd e

−ψ < +∞. Then, its moment measure µψ is centered
and its support spans Rd. In particular,

inf
θ∈Sd−1

ˆ
Rd

|x · θ|dµψ(x) > 0.

Alternatively, Santambrogio proposed an optimal transport proof of the same result by ex-
ploring the geodesic convexity of the following functional

(2.8) min
ϱ∈P1(Rd)

Eµ(ϱ)
def.
= H(ϱ) + T (ϱ, µ),

whereH corresponds to the negative entropy functional (2.6) and T denotes Brenier’s formulation
of the quadratic optimal transport problem, or maximimal correlation problem (2.3). Santambro-
gio relates both problems and recovers the characterization of moment measures with minimizers
of Eµ, which are log-concave probability densities whose potential is essentially continuous, thus
recovering the results of Cordero-Eurasquin and Klartag.

More recently, Delalande and Farineli [DF25] studied the quantitative stability of regularized
moment measures, which they define via the unique minimizer of the following functional, which
consists of a second moment regularized version of Eµ:

(2.9) Eµ,α(ϱ)
def.
= H(ϱ) + T (ϱ, µ) +

α

2
M2(ϱ).

Minimizers of the regularized version are now unique and of the following form: there exists ψα
convex such that

ϱα = e−(ψα+
α
2
|x|2) and (∇ψα)♯e

−(ψα+
α
2
|x|2) = µ.

A major interest of introducing regularized moment measures is computational; indeed regu-
larizing the functional Eµ with the second moment term M2(ϱ) makes it α-strongly geodesicaly
convex in the Wasserstein geometry while preserving the most important feature of the repre-
sentation via moment measures, that is being the push-forward of a Gibbs measure through (a
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perturbation of) its potential’s gradient. For these reasons, its not surprising that the arguments
in [DF25] are based on strong geodesic convexity and actually do not require the dual formulation
of Eµ,α.

To fully exploit the sharp stability version of Prékopa-Leindler’s inequality, we shall require the
connection of both primal and dual formulations. For this reason we introduce the regularized
dual functional defined for any α ≥ 0 as

(2.10) Jµ,α(φ)
def.
= log

ˆ
Rd

e−(φ∗+α
2
|x|2)dx−

ˆ
Rd

φdµ.

In the following theorem, we summarize the contributions from the literature and show a strong-
duality type result with a small adaptation of a remark from Santambrogio in [San16], but that
will be useful in the sequel. More importantly, we identify a way to map minimizers of Eµ,α into
maximizers of Jµ,α and vice-versa.

Theorem 2.4 ([CEK15,San16,DF25]). Let µ be a Radon probability measure in P1(Rd) whose
barycenter lies at the origin and such that dim suppµ = d. The following assertions hold:

• For every α ≥ 0 there is strong duality:

(2.11) supJµ,α = − inf Eµ,α.

• Eµ,α admits a minimizer of the form

(2.12) ϱα = e−(ψα+
α
2
|x|2) and (∇ψα)♯ϱα = µ,

where ψα is an essentially continuous and convex function, so that ∇ψα is the unique
Brenier map from ϱα to µ.

If α > 0 this minimizer is unique; and if α = 0 it is unique up to translations. In any
case, if ϱα is a minimizer, defining

(2.13) φα
def.
= ψ∗

α for ψα
def.
= − log ϱα − α

2
|x|2,

it follows that φα is a maximizer of Jµ,α.
• Jµ,α admits a maximizer φα, whose Legendre transform ψα

def.
= φ∗

α is an essentially
continuous and convex function, and gives the regularized moment measure representation
for µ

(2.14) (∇ψα)♯e
−(ψα+

α
2
|x|2) = µ

If α > 0, the maximizer is unique; whereas if α = 0 it is unique up to the addition of
an affine function.

In any case, if φα is a maximizer, defining ψα = φ∗
α it follows that

(2.15) ϱα
def.
= e−(ψα+

α
2
|x|2)

is a minimizer of Eµ,α.

Proof. First let us prove the strong duality type-result. It was already proven in the case α = 0
in [San16], we prove it here for general α for completeness and for the reader’s convenience.

First, we compute the Legendre transform of Eµ,α. It is defined as a functional over the space
of convex functions as

E ∗
µ,α(f)

def.
= sup

ρ∈P(Rd)

⟨f, ρ⟩ −H(ρ)− α

2

ˆ
Rd

|x|2dρ− inf
φ convex

ˆ
Rd

φ∗dρ+

ˆ
Rd

φdµ

= sup
φ convex

−
ˆ
Rd

φdµ+ sup
ρ∈Pac(Rd)

〈
f − φ∗ − α

2
|x|2, ρ

〉
−
ˆ
Rd

log ρdρ
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The supremum on ρ is attained, and the maximizer is characterized by the following Euler-
Lagrange equations; see [San15]: ρ > 0 a.e. over Rd and

log ρ+ φ∗ +
α

2
|x|2 − f ≡ cte,

so that ρ ∝ e−(φ∗+α
2
|x|2−f). A straightforward computation then gives

E ∗
µ,α(f) = sup

φ convex
log

ˆ
Rd

e−(φ∗+α
2
|x|2−f)dx−

ˆ
Rd

φdµ.

As a result, taking f ≡ 0 we get that

sup
φ convex

Jµ,α(φ) = − inf
ϱ∈P1(Rd)

Eµ,α(ϱ).

The existence of minimizers for Eµ,α and maximizers for Jµ,α is completely equivalent, as
we will see in the sequel. However, the proof of existence for Eµ,α and general α ≥ 0 has been
done in [DF25], along with the claimed characterization of minimizers and the relation with
moment measures. Therefore, to be economic the reader referred to this work for a proof of the
second assertion, we only comment that the uniqueness in the case α > 0 stems from the strong
geodesic convexity of the energy, while the functional Eµ is invariant with respect to translations,
[San16, Prop. 3.1].

Now given a minimizer ϱα, for any α ≥ 0, consider ϱα as defined above and let us compute
Jµ,α(ϱα) as follows

Jµ,α(φα) = log

ˆ
Rd

e−(φ∗
α+

α
2
|x|2)dx−

ˆ
Rd

φαdµ

= log

ˆ
Rd

elog ϱαdx︸ ︷︷ ︸
=0

−
ˆ
Rd

φαdµ.

Now using the regularized moment measure representation for µ in terms of ψα = φ∗
α and

Fenchel’s identity φα(∇φ∗
α(x)) = ⟨x,∇φ∗

α(x)⟩ − φ∗
α(x), it holds that

Jµ,α(φα) = −
ˆ
Rd

φα(∇φ∗
α(x))e

−(φ∗
α(x)+

α
2
|x|2)dx

= −
ˆ
Rd

⟨x,∇φ∗
α(x)⟩ dϱα︸ ︷︷ ︸

=T (ϱα,µ)

+

ˆ
Rd

(
φ∗
α(x) +

α

2
|x|2
)
dϱα︸ ︷︷ ︸

=−H(ϱα)

−α
2

ˆ
Rd

|x|2dϱα

= −Eµ,α(ϱα).

As a result, we finally obtain that

supJµ,α ≥ Jµ,α(ψα) = −Eµ,α(ϱα) = − inf Eµ,α = supJµ,α,

so that φα must be a maximizer of Jµ,α.
Doing the same reasoning, but on the inverse, starting an arbitrary maximizer of Jµ,α, we can

construct a log-concave probability measure which minimizes Eµ,α, but since those are unique
thanks to the strong geodesic convexity, or at least unique up to a translation in the case α = 0,
we obtain that the maximizers of Jµ,α must also be unique, or unique up to adding an affine
function in the case α = 0. □

It can also be shown that the Gibbs measure associated with the moment measure (resp.
regularized moment measure) representation of a given µ is a minimizer for Eµ (resp. Eµ,α),
see [San16, Prop. 5.1] for classical moment measures, [DF25, Prop. 4.2] and [CEK15, Thm. 8]
for the corresponding statement for the dual functional Jµ.

The moment measure representation can be seen as a stationarity condition for Jµ and its
maximazation can be studied through its concavity, which is equivalent to the Brascamp-Lieb
inequality. Indeed, its first and second variations are computed as follows:
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Lemma 2.5. The first and second variations of Jµ are computed as follows: given two convex
functions φ0, φ1, setting v def.

= φ1 − φ0, φt
def.
= φ0 + tv, and the Gibbs probaility measure ϱφ∗

t ,α
∝

e−(φ∗
t+

α
2
|x|2) and its regularized moment measure µφ∗

t ,α
= (∇φ∗

t )♯ϱφ∗
t ,α

it holds that

d

dt
Jµ,α(φt) =

ˆ
Rd

vd(µφ∗
t ,α

− µ).

In addition, defining w(x) def.
= v(∇φ∗(x)), it holds that

d2

dt2
Jµ,α(φt) = Varϱφ∗

t ,α
(w)−

ˆ
Rd

〈
(D2φ∗

t )
−1∇w,∇w

〉
dϱφ∗

t ,α
.

Proof. For fixed x ∈ Rd, we start by computing the first and second time derivatives of φ∗
t (x)

with an application of the envelope theorem. This quantity can be shown to be C 2 with an
implicit function argument as done rigorously in [DM23].

Let yt be optimal for the supremum defining φ∗
t (x), that is

(2.16) yt = argmax
y∈Rd

⟨y, x⟩ − φt(y), so that yt = ∇φt−1(x) = ∇φ∗
t (x).

From the envelope theorem we have that

d

dt
φ∗
t (x) = ∂t (⟨y, x⟩ − φt(y))|y=yt = −v(∇φ∗

t (x)).

To compute the second time derivative, we then have

d2

dt2
φ∗
t (x) = − d

dt
v(∇φ∗

t (x)) = −∇v(∇φ∗
t (x)) · y′t.

Taking derivatives w.r.t. t on the optimality condition defining yt, that is x = ∇φt(yt), we get

y′t = −D2φt(yt)
−1∇v(yt).

In addition, for the gradient of the quantity w we have that

∇w(x) = ∇(v(yt)) = D2φ∗
t (x)(∇v) ◦ yt.

Therefore, using that D2φt(yt)
−1 = D2φ∗

t (x), the previous computation gives

d2

dt2
φ∗
t (x) =

〈(
D2φ∗

t

)−1∇w,∇w
〉
.

We can then compute the first and second time derivatives of Jµ,α(φ + tv) via derivation
under the integral sign as

d

dt
Jµ,α(φt) =

1

Zt

ˆ
Rd

e−(φ∗
t+

α
2
|x|2)

(
− d

dt
φ∗
t

)
−
ˆ
Rd

vdµ

=

ˆ
Rd

vd(µφ∗
t ,α

− µ),

for Zt =
´
Rd e

−(φ∗
t+

α
2
|x|2).

For the second time derivative, we get that

d2

dt2
Jµ,α(φt) = −Z

′
t

Zt

ˆ
Rd

v(∇φ∗
t )dϱφ∗

t ,α
+

ˆ
Rd

(
v(∇φ∗

t )
2 − d2

dt2
φ∗
t

)
dϱφ∗

t ,α

= Varϱφ∗
t ,α

(w)−
ˆ
Rd

〈(
D2φ∗

t

)−1∇w,∇w
〉
dϱφ∗

t ,α
.

The result follows. □
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For α = 0, the above computation for the second variation of Jµ gives precisely minus the
deficit of the Brascamp-Lieb inequality. In the case that α > 0 we need to be a bit careful to
perform a Taylor expansion on the Hessian and get the same deficit plus lower order terms in α.
Either way, these computations give a clear intuition on why Cordero-Eurasquin and Klartag’s
characterization should hold, but it does not provide the essential continuity of the potential,
which is at the heart of their statement.

Remark 2.6. More importantly to our purposes, it becomes clear that having access to a sharp
quantitative stability version of Brascamp-Lieb’s inequality shall give stability results for the
potentials of moment measure representations. As discussed in the introduction, there are a few
next order expansions of the Brascamp-Lieb inequality in the literature [CE17,BGG18,Har08].
However, not only our Theorem 4.13 is more adapted to our purposes as we show that the deficit
δBL controls a distance, but also we do it with a multiplicative constant Cd that is independent
of the measure ϱφ. This last feature is crucial for the applications to moment measures, as we
shall see below.

2.3. State of the art on the Prékopa-Leindler inequality. The original version of the
Prékopa-Leindler inequality was initially proposed independently by Prékopa in [Pré71, Pre73]
and Leindler [Lei73] and can be stated as follows: given a triplet of measurable functions f, g, h :
Rd → R+ such that for a given parameter s ∈ (0, 1) the so-called Prékopa condition holds

(2.17) f(x)sg(y)1−s ≤ h(sx+ (1− s)y) for all x, y ∈ Rd,
then we have the following bound

(2.18)
(ˆ

Rd

f(x)dx

)s(ˆ
Rd

g(x)dx

)1−s
≤
ˆ
Rd

h(x)dx.

This inequality is a functional generalization of the Brunn-Minkowski inequality, for which many
stability results have been derived, see for instance the seminal work [FMP10], where stability
version of such geometric inequalities have been derived.

A stability version for the Prékopa-Leindler inequality quantifies how functions nearly sat-
isfying the equality case must be close to an optimal log-concave profile. The result takes the
following form: if h, f, g : Rd → R+ satisfy Prékopa condition (2.17) and (2.18) is almost satisfied
in the sense that

(2.19)
ˆ
Rd

h(x)dx ≤ (1 + ε)

(ˆ
Rd

f(x)dx

)s(ˆ
Rd

g(x)dx

)1−s
.

for some ε > 0, there exists a log-concave function h̃ : Rd → R+ and parameters a > 0, x0 ∈ Rd
such that the following proximity estimates hold:

(2.20)

ˆ
Rd

|f(x)− a−sh̃(x− sx0)|dx ≤ C(τ)εαn(τ)

ˆ
Rd

f(x)dx,

ˆ
Rd

|g(x)− a1−sh̃(x+ (1− s)x0)|dx ≤ C(τ)εαn(τ)

ˆ
Rd

g(x)dx,

ˆ
Rd

|h(x)− h̃(x)|dx ≤ C(τ)εαn(τ)

ˆ
Rd

h(x)dx,

where

τ
def.
= min(s, 1− s), a

def.
=

´
Rd f´
Rd g

C(τ) is a constant that depends on τ , and αn(τ) > 0 is a computable exponent that typically
depends on both the dimension n and the parameter τ .

Obtaining sharper versions of this inequality is currently a very active area of research. On
one side, the sharp exponent α is expected to be 1/2, as is the case, for instance, for the isoperi-
metric and Brunn-Minkowski inequalities [FMP10]. Indeed, this exponent has been obtained
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in [FvHT25], but at the cost of a sub-obtimal constant C(τ) that does not behave properly as
τ → 0+. On the other hand, in [FR24], a quantitative stability version has been shown with
α = 1/2 and C ∝ τ−1/2 in the 1D or radial in Rd, when the involved functions are log-concave.

In the present work, we will only need a stability version of Prékopa-Leindler for the case
τ = 1/2. Therefore, the τ−dependence of the constant C(τ) is not particularly important for
us, and we may hence use some of the results from [FvHT25] directly, which we collect in the
following Lemma.

Lemma 2.7. Let f, g, h : Rd → R+ be measurable functions satisfying Prékopa’s condition (2.17)
with s = 1/2. If there is ε > 0 such that (2.19) holds, there exists x0 ∈ Rd and a dimensional
constant Cd such that ˆ

Rd

∣∣∣∣ f(x)´
Rd f

− g(x+ x0)´
Rd g

∣∣∣∣dx ≤ Cdε
1/2.

Proof. Recall a def.
=
´
Rd f´
Rd g

, so from [FvHT25], estimates (2.20) hold with α = 1/2 and a constant

C(τ) = C(1/2) = Cd, that depends only on the dimension. So there is a log-concave function h̃
such that ˆ

Rd

∣∣∣∣∣ f(x)´
Rd f

−
h̃(x− 1

2x0)(´
Rd f
´
Rd g

)1/2
∣∣∣∣∣ dx ≤ Cdε

1/2,

ˆ
Rd

∣∣∣∣∣ g(x)´
Rd g

−
h̃(x+ 1

2x0)(´
Rd f
´
Rd g

)1/2
∣∣∣∣∣ dx ≤ Cdε

1/2.

A change of variables on the inequality concerning g and an easy triangular inequelity give the
desired bound. □

3. Sharp Quantitative Stability for Brascamp-Lieb inequality

In this section we are focused on the quantitative stability of the Brascamp-Lieb inequality,
as stated in Theorem 1.1. Due to its importance to derive quantity stability results, and for the
reader’s convenience, we recall how this can be obtained with the carré du champ method, which
is based on the geometry of the following operator

Lu
def.
= ∆u−∇φ · ∇u.

This method is based on the so called Γ-calculus, which revolves around the following commutator
operators

Γ(f, g)
def.
=

1

2
(L(fg)− fLg − gLf) = ⟨∇f,∇g⟩ ,

Γ2(f, g)
def.
=

1

2
(LΓ(f, g)− Γ(f, Lg)− Γ(g, Lf)) = D2f : D2g +

〈
D2φ∇f,∇g

〉
.

It is then a straight-forward computation to check the integration by parts formula

(3.1)
ˆ
Rd

Γ(f, g)dϱφ =

ˆ
Rd

⟨f, g⟩dϱφ = −
ˆ
Rd

fLgdϱφ = −
ˆ
Rd

gLfdϱφ.

Lemma 3.1. Inequality (1.1) holds, and we have equality if, and only if, there exists a ∈ Rd
such that

f(x) = a · ∇φ(x) + Eϱφf.

Proof. Given f ∈ C∞
c (Rd), set f̄ = f − Eϱφf and let u be the unique weak solution of

Lu = f̄ .
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From the classical regularity theory of uniformly elliptic equations, u ∈ C∞(Rd). So we can use
the Γ calculus tools to write the variance of f as

Varϱφ(f) =

ˆ
Rd

f̄2dϱφ =

ˆ
Rd

f̄Ludϱφ = −
ˆ
Rd

⟨∇f,∇u⟩dϱφ

= −
ˆ
Rd

〈
(D2φ)

−1/2∇f, (D2φ)
1/2∇u

〉
dϱφ

≤
(ˆ

Rd

∥∥∥(D2φ)
−1/2∇f

∥∥∥2 dϱφ)1/2(ˆ
Rd

∥∥∥(D2φ)
1/2∇u

∥∥∥2 dϱφ)1/2

=

(ˆ
Rd

〈
(D2φ)

−1∇f,∇f
〉
dϱφ

)1/2(ˆ
Rd

〈
D2φ∇u,∇u

〉
dϱφ

)1/2

.

Now we notice thatˆ
Rd

Γ2(u)dϱφ =
1

2

ˆ
Rd

L|∇u|2dϱφ −
ˆ
Rd

⟨∇u,∇Lu⟩dϱφ = −
ˆ
Rd

⟨∇u,∇Lu⟩dϱφ

since the integrand of the first integral is a divergence. In addition, by definition of Γ2 we have
that ˆ

Rd

〈
D2φ∇u,∇u

〉
dϱφ =

ˆ
Rd

Γ2(u)dϱφ −
ˆ
Rd

∥∥D2u
∥∥2
F
dϱφ

= −
ˆ
Rd

⟨∇u,∇Lu⟩dϱφ −
ˆ
Rd

∥∥D2u
∥∥2
F
dϱφ

= Varϱφ(f)−
ˆ
Rd

∥∥D2u
∥∥2
F
dϱφ.

Plugging it back into the original estimations of Varϱφ(f), we notice that

Varϱφ(f) ≤
(ˆ

Rd

〈
(D2φ)

−1∇f,∇f
〉
dϱφ

)1/2(
Varϱφ(f)−

ˆ
Rd

∥∥D2u
∥∥2
F
dϱφ

)1/2

which gives inequality (1.1). This proof is also enlightening on the equality cases; indeed notice
that the chain of inequalities are all equalities, except for the application of a Cauchy-Scharwz
and the non-positive term on −

∥∥D2u
∥∥2
F
.

As a result, we have equality if, and only if,

D2u ≡ 0 and (D2φ)
−1/2∇f ∥ (D2φ)

1/2∇u.

The first condition implies that u = a ·x+ b for constant a ∈ Rd and b ∈ R. Since u is a classical
solution of the equation Lu = f̄ , it follows that, to have equality f must satisfy

f = a · ∇φ(x) + Eϱφf.

The result follows. □

With the knowledge of the equality case for (1.1), we now aim at a quantitative stability
version of this inequality in terms of the L1 distance to the optimal set (see Remark 2.6), as
highlighted in Theorem 1.1. We state that result below once more for the reader’s convenience.

Theorem 3.2. Let φ : Rd → R ∪ {+∞} be an essentially continuous and convex function, and´
Rd e

−φ < +∞ so that the Gibbs mesuare ϱφ is well defined as in (1.4).
Then, there exists a universal constant Cd depending only on the ambient dimension such that

distL1(ϱφ)(f,OBL) ≤ CdδBL(f)
1/2

for all locally Lipschitz functions f ∈ L2(ϱφ).
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Our proof of Theorem 3.2 will be based, as mentioned in the introduction, on the linealization
argument from Bobkov-Ledoux [BL00], while employing the main results from [FvHT25] in order
to control the deficit, and carefully using the geometry induced by the potential in order to control
the several stability parameters involved.

Proof. We first prove the result of the case that φ is strongly convex and essentially continuous
function. That is, we assume that there exists α > 0 such that D2φ ≥ αid, where the gradients
and hessians ∇φ,D2φ are understood in the sense of Alexandrov (see for instance [EG15, Chapter
6]). Therefore L d and ϱφ are a.e. well defined.

Given f ∈ L2(ϱφ), it can be arbitrarily approximated in L2(ϱφ) by a sequence of smooth
functions, so for the moment we assume f ∈ C∞

c (Rd). As a result, from the α-strong convexity
of φ there exists δ0 > 0 such that for all δ < δ0 the function 2δf − φ is concave.

Our goal is to apply the quantitative stability version of the Prékopa-Leindler inequality with
convexity parameter s = 1/2. In order to do so, we consider the functions

uδ
def.
= e2δf−φ, vδ

def.
= e−φ, wδ

def.
= efδ−φ,

where fδ(z) is pointwise defined as

fδ(z) = sup
z=x+y

2

δf(x)−
[
1

2
φ(x) +

1

2
φ(y)− φ

(
x+ y

2

)]

= sup
h∈Rd

δf(z + h)−
[
1

2
φ(z + h) +

1

2
φ(z − h)− φ(z)

]
.

It is not too hard to check that the triple of functions uδ, vδ, wδ satisfies the condition in
Prékopa–Leindler’s inequality. Hence, as the total mass of vδ is 1 by assumption, the standard
Prékopa-Leindler inequality holds and we can define the non-negative quantity εδ such that

(3.2)
ˆ
Rd

wδdx = (1 + εδ)

(ˆ
Rd

uδdx

)1/2

, εδ
def.
=

´
Rd wδdx−

(´
Rd uδdx

)1/2(´
Rd uδdx

)1/2 .

Analogously as in Bobkov-Ledoux [BL00], our argument to obtain the sharp quantity version of
the Brascamp-Lieb inequality will consist of studying the dependence on δ of the above quantities.
Starting with the integral of uδ, we get the following Taylor expansion on δ:

(3.3)
ˆ
Rd

uδdx = 1 + 2δ

ˆ
Rd

fdϱφ + 2δ2
ˆ
Rd

f2dϱφ + o(δ2).

For the expansion on the integral of wδ, recall the classical result from log-concave measures
that

if
ˆ
Rd

e−φ < +∞, then φ is coercive.

Therefore, the quantity being maximized in the definition of fδ is strongly concave and goes to
−∞ as h → +∞. Hence for ϱφ-a.e. z let hδ = hδ(z) be optimal for the supremum in fδ(z).
The optimality conditions for hδ give, for ϱφ-a.e. point where the gradients and hessian of φ are
uniquely defined, that

δ∇f(z + hδ) =
1

2
[∇φ(z + hδ)−∇φ(z − hδ)] = D2φ(z)hδ + o(δ).

Since D2φ ≥ αid, the hessian is invertible and (D2φ)
−1 ≤ α−1id, and developing the Taylor

expansion for ∇f in the identity above we obtain that

hδ = δ(D2φ)
−1∇f(z) + o(δ).

In particular hδ = O(δ), uniformly in z. As a result, we can expand the value of fδ(z) as

fδ(z) = δf(z) +
δ2

2

〈
(D2φ)

−1∇f,∇f
〉
+ o(δ2).
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Therefore, with a similar argument to the expansion of the integral of uδ, we getˆ
Rd

wδdx =

ˆ
Rd

efδdϱφ

= 1 + δ

ˆ
Rd

fdϱφ +
δ2

2

ˆ
Rd

f2dϱφ +
δ2

2

ˆ
Rd

〈
(D2φ)

−1∇f,∇f
〉
dϱφ + o(δ2).

In addition, using the Taylor expansion (1 + s)1/2 = 1 + 1
2s−

1
8s

2 + o(δ2) and the expansion
for the integral of uδ we obtain that(ˆ

Rd

uδdx

)1/2

= 1 + δ

ˆ
Rd

fdϱφ + δ2
ˆ
Rd

f2dϱφ − δ2

2

(ˆ
Rd

fdϱφ

)2

+ o(δ2).

Joining these estimates, we obtain the following expansion for εδ:

εδ =

(ˆ
Rd

uδdx

)−1/2
(ˆ

Rd

wδdx−
(ˆ

Rd

uδdx

)1/2
)

= (1 +O(δ))
δ2

2

[ˆ
Rd

〈
(D2φ)

−1∇f,∇f
〉
dϱφ −Varϱφ(f) +

o(δ2)

δ2

]
= (1 +O(δ))

δ2

2

[
δBL(f) +

o(δ2)

δ2

]
From the quantitative stability of the Prékopa-Leindler inequality we obtain that there exists

a universal constant Cd, depending only on the dimension and on the convexity parameter which
is fixed s = 1/2, and some vector xδ ∈ Rd such that

(3.4)
ˆ
Rd

∣∣∣∣ uδ(x)´
Rd uδ

− e−φ(x+xδ)
∣∣∣∣ dx ≤ Cdε

1/2
δ .

Taking into account the scaling of εδ, which behaves as δ2, we see that the RHS of the above
inequality is of the order δ. Developing the LHS depends strongly on the behavior of xδ when
δ → 0. Clearly it must hold that xδ → 0 as δ → 0, as a result we obtain that
ˆ
Rd

∣∣∣∣ uδ(x)´
Rd uδ

− e−φ(x+xδ)
∣∣∣∣ dx =

(ˆ
Rd

uδ

)−1 ˆ
Rd

∣∣∣∣e2δf − e−(φ(x+xδ)−φ(x))
ˆ
Rd

uδ

∣∣∣∣ dϱφ
= (1 +O(δ))

ˆ
Rd

∣∣1 + 2δf + o(δ)− (1 +∇φ(x) · xδ + o(xδ))
(
1 + 2δEϱφf + o(δ)

)∣∣ dϱφ
= (1 +O(δ))2δ

ˆ
Rd

∣∣∣f −∇φ(x) · xδ
2δ

− Eϱφf
∣∣∣dϱφ + o(δ + xδ).

Therefore, in order to obtain a meaningful estimate in terms of distL1(ϱφ)(f,OBL), we must
show that xδ/2δ has a cluster point as δ → 0+. For this, define the sets

Ωn
def.
=
{
x ∈ domφ : D2φ(x) ≤ nid

}
.

From the convexity of φ, for every n ∈ N we can choose δ sufficiently small so that φ(x+ xδ)−
φ(x) = O(xδ). More precisely, there is δn such that for δ ≤ δn we have

∥vδ − vδ(·+ xδ)∥L1(Rd) ≥ ∥vδ − vδ(·+ xδ)∥L1(Ωn)

=

ˆ
Ωn

∣∣∣∣xδ · ∇φ(x) + 1

2

〈
D2φ(x)xδ, xδ

〉
+ o(x2δ)

∣∣∣∣ dϱφ
≥ 1

2

ˆ
Ωn

|xδ · ∇φ(x)|dϱφ.
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Using a suitable triangle inequality, we get for δ ≤ δn

1

2

ˆ
Ωn

|xδ · ∇φ(x)|dϱφ ≤ ∥vδ − vδ(·+ xδ)∥L1(Rd)

≤ ∥vδ − uδ∥L1(Rd) + ∥uδ − vδ(·+ xδ)∥L1(Rd) ≤ Cδ,

where the bound ∥vδ − uδ∥L1(Rd) = O(δ) follows directly from the definition of uδ as a pertur-
bation of vδ and ∥uδ − vδ(·+ xδ)∥L1(Rd) = O(δ) is a consequence of the previous estimations on
the deficit of the Prékopa-Leindler inequality. But then we conclude that the quantityˆ

Ωn

∣∣∣xδ
2δ

· ∇φ(x)
∣∣∣dϱφ

must remain uniformly bounded for δ ≤ δn. Now, we wish to exploit the fact that, since φ
is essentially continuous, its moment measure µφ has full-dimensional support, as highlighted
in Lemma 2.3. Since xδ/ ∥xδ∥ ∈ Sd−1, we can find a subsequence of δn −−−→

k→∞
0 such that

xδn/ ∥xδn∥ −−−→
k→∞

θ̄, for some θ̄ ∈ Sd−1. But then using Lebesgue’s dominated convergence

theorem and the fact that 1Ωn converges strongly in L1(ϱφ) to 1, we get that

C ≥ lim sup
n→∞

ˆ
Ωn

∣∣∣∣xδn2δn
· ∇φ(x)

∣∣∣∣dϱφ = lim sup
n→∞

∥xδn∥
2δn

ˆ
Ωn

∣∣∣∣ xδn∥xδn∥
· ∇φ(x)

∣∣∣∣ dϱφ
=

(ˆ
Rd

|θ̄ · y|dµφ(y)
)
lim sup
n→∞

∥xδn∥
2δn

Since the moment measure µφ has full-dimensional support, xδn/δn remains bounded as n→ ∞.
Therefore, we can extract a subsequence δn −−−→

k→∞
0 such that xδn

2δn
−−−→
k→∞

a, for some vector

a ∈ Rd. Coming back to the estimate on εδ from (3.4), dividing both sides by δ and passing to
the limit of these estimates as δn → 0 we obtain that

distL1(ϱφ)(f,OBL) ≤
ˆ
Rd

∣∣(f −∇φ(x) · a− Eϱφf
)∣∣dϱφ

≤ lim inf
k→∞

(1 +O(δn))

ˆ
Rd

∣∣∣∣(f −∇φ(x) · xδn
2δn

− Eϱφf
)∣∣∣∣ dϱφ + o(δn)

≤ lim sup
k→∞

Cd

(
δBL(f) +

o(δ2n)

δ2n

)1/2

= CdδBL(f)
1/2,

and the result follows when φ is α-strongly convex and f ∈ L2(ϱφ)∩C∞
c (Rd). By approximation,

it follows also for all f ∈ L2(ϱφ).
For an arbitrary φ convex and essentially continuous, we finish the proof with an approximation

argument. In order to make it clearer, we modify the notation used previously in order for it to
emphasize the dependence on the potential φ. Hence, we shall write

δBL(f ;φ) and distL1(ϱφ)(f,OBL,φ),

in order to denote the deficit of the Brascamp-Lieb inequality and the distance to optimal func-
tions with respect to the potential φ, respectively. Our strategy is to add a little quadratic
regularization by defining φα

def.
= φ+ α

2 | · |
2. The result will follow if we prove that the deficit if

upper semi-continuous

(3.5) lim sup
α→0+

δBL(f ;φα) ≤ δBL(f ;φ),

and that the distance to optimal functions is lower semi-continuous

(3.6) distL1(ϱφ)(f,OBL,φ) ≤ lim inf
α→0+

distL1(ϱφ)(f,OBL,φα).
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For the first identity (3.5), first notice that the Gibbs measures ϱφα converge pointwise, even
uniformly, to ϱφ as α→ 0+. Then, for any f ∈ L2(ϱφ), convergence of the variance follows from
Lebesgue’s dominated convergence theorem:

Varϱφα
(f) −−−−→

α→0+
Varϱφ(f).

For the positive term in the deficit, notice that D2φα = D2φ + αid ≥ D2φ, hence D2φα is
invertible and it follows that

(
D2φα

)−1 ≤
(
D2φ

)−1 in the partial ordering of positive semi-
definite matrices, even if D2φ becomes singular. As a result, assuming that δBL(f ;φ) < +∞, we
have for all α > 0 and f ∈ L2(ϱφ) that

ˆ
Rd

〈(
D2φα

)−1∇f,∇f
〉
dϱφα ≤

ˆ
Rd

〈(
D2φ

)−1∇f,∇f
〉
dϱφα

and passing to the limit as α→ 0+ yields (3.5).
Moving on the sencond identity (3.6), notice that the finite dimensional function

(a, b) 7→ ∥f − (a · ∇φα + b)∥L1(ϱφα )

is convex, due to the triangle inequality, and coercive. So the infimum is attained at some (aα, bα)
and, in particular, we know that it must be the case that bα = Eϱφα

f −−−−→
α→0+

Eϱφf
def.
= b̄. In

addition, the optimal aα must be all contained in the same compact ball since (ϱφα)α>0 have
equibounded moments. So we can assume w.l.o.g. that aα −−−−→

α→0+
ā. It then follows from Fatou’s

Lemma that

distL1(ϱφ)(f,OBL,φ) ≤
∥∥f − (ā · ∇φ+ b̄)

∥∥
L1(ϱφ)

≤ lim inf
α→0+

distL1(ϱφ)(f,OBL,φα).

The result follows. □

4. Quantitative Stability of Moment Measures

In this section we use the previous machinery to obtain sharp quantitative stability results for
moment measures. We start by proving Theorem 1.2. As usual, we shall state it again below for
the reader’s convenience:

Theorem 4.1. Given a Radon measure µ ∈ P1(Rd) whose barycenter lies that the origin and
dim suppµ = d, let φ̄ be a maximizer of Jµ. Then for any convex function φ : Rd → R∪{+∞}
it holds that

(4.1) distL1(Rd) (ϱφ∗ ,Mµ) ≤ Cd(Jµ(φ̄)− Jµ(φ))
1/2.

In addition, there exists λ ∈ (0, 1/2) such that, setting v def.
= φ̄− φ and φλ

def.
= φ̄+ λv, it holds

that

(4.2) distL1(µλ) (φ,Nµ) ≤ Cd (Jµ(φ̄)− Jµ(φ))
1/2 ,

where µλ = µφ∗
λ

is the moment measure associated with the interpolation (φλ)
∗.

Proof. To prove the first estimate (4.1), we let φ̄ be a maximizer of Jµ, while φ is a general
convex function. We then employ the quantitative version of the Prékopa-Leindler inequality
with the functions

f = e−φ̄
∗
, g = e−φ

∗
and h = e

−φ∗
1/2 with φ1/2 =

φ̄+ φ

2
.
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Therefore f, g, h satisfy the Prékopa condition with convexity parameter s = 1/2. In addition,
due to concavity of Jµ and the optimality of φ̄ we have that

0 ≤ δ
def.
= Jµ(φ1/2)−

1

2
(Jµ(φ̄) + Jµ(φ))

≤ Jµ(φ̄)−
1

2
(Jµ(φ̄) + Jµ(φ)) =

1

2
(Jµ(φ̄)− Jµ(φ))

def.
= ε.

The quantity δ can be precisely related to the deficit of the Prékopa-Leindler inequality. Indeed:

δ = log

(ˆ
Rd

e
−φ∗

1/2dx

)
− log

(ˆ
Rd

e−φ̄
∗
dx ·
ˆ
Rd

e−φ
∗
dx

)1/2

−
ˆ
Rd

(φ1/2 −
1

2
(φ̄+ φ)︸ ︷︷ ︸

=0

)dµ

= log


ˆ
Rd

e
−φ∗

1/2dx(ˆ
Rd

e−φ̄
∗
dx ·
ˆ
Rd

e−φ
∗
dx

)1/2

 ≤ ε.

Now, notice that since ϱφ̄∗ and all elements in Mµ are probability measures, their distance
in L1(Rd) is at most 2. As a result, we can assume that Jµ(φ̄) − Jµ(φ) < 1 otherwise the
inequality is trivial. From the previous estimates we have that

ˆ
Rd

e
−φ∗

1/2dx < (1 + ε)

(ˆ
Rd

e−φ̄
∗
dx ·
ˆ
Rd

e−φ
∗
dx

)1/2

.

Then, the quantitative version of Prékopa-Leindler inequality in the form of Lemma 2.7 implies
that there exists a universal constant Cd depending only on the dimension and x0 ∈ Rd such
that ˆ

Rd

|ϱφ̄∗(x)− ϱφ∗(x+ x0)| dx ≤ Cd(Jµ(φ̄)− Jµ(φ))
1/2.

Estimate (4.1) follows.
For the second estimate recall the interpolation φt = φ̄ + tv, so that φ0 = φ̄, and define the

one-dimensional function
t 7→ J(t)

def.
= Jµ(φt).

Hence a second order Taylor expansion and the characterization of the second variation of Jµ

from Lemma 2.5 we obtain that

Jµ(φ)− Jµ(φ̄) = J(1)− J(0) = J ′(0) +

ˆ 1

0
(1− t)J ′′(t)dt

= ⟨∇Jµ(φ̄), v⟩︸ ︷︷ ︸
=0

+

ˆ 1

0
(1− t)

d2

dt2
Jµ(φt)dt

= −
ˆ 1

0
(1− t)δBL

(
v(∇φ∗

t ), ϱφ∗
t

)
dt,

where we have used the fact that if φ̄ ∈ argmaxJµ then the moment measure µφ∗ coincides
with µ so that the first variation vanishes. In the sequel, using the quantitative stability version
of the Brascamp-Lieb inequality provided by Theorem 3.2, there exists a dimensional constant
Cd such thatˆ 1

0
(1− t) inf

a∈Rd,b∈R
∥(φ− φ̄)− (a · x+ b)∥2L1(µφ∗

t
) dt ≤ C2

d (Jµ(φ̄)− Jµ(φ)) .
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In particular, there must exist some λ ∈ (0, 1/2) such that the integrand above evaluated at the
interpolation µφ∗

λ
yields

inf
a∈Rd,b∈R

∥(φ− φ̄)− (a · x+ b)∥2L1(µφ∗
λ
) ≤ 2Cd (Jµ(φ̄)− Jµ(φ))

1/2 .

This finishes our proof. □

4.1. Stability in a compact domain. The simplest case of stability is when both ϱ and µ
are restricted to be supported on a convex and compact domain Ω, that is ϱ, µ ∈ P(Ω). The
attentive reader might have hesitated if this is even possible without contradicting the uniqueness
result of Cordero-Eurasquin and Klartag for moment measure representations. Here the question
is to find ψ ∈ C (Ω) such that

(4.3) µ = (∇ψ)♯e
−ψL d Ω.

The existence question follows with simplified versions of the arguments from [CEK15,San16] by
considering the functionals

Eµ,Ω(ϱ)
def.
=

ˆ
Ω
log ϱdϱ+ T (ϱ, µ), Jµ,Ω(φ)

def.
= log

ˆ
Ω
e−φ

∗
dx−

ˆ
Ω
φdµ.

Uniqueness then follows, now without modulo translations, due to the strict geodesic convexity
of the entropy since Ω is convex.

One could embed µ in P(Ω′) for any Ω′ containing its support and obtain another moment
measure representation. What is happening here? For any representation in a bounded domain
the potential ψΩ is necessarily Lipschitz continuous, for instance due to ∇ψΩ being the Brenier
map with the compactly supported target µ, and hence bounded in Ω. Therefore, if one wishes
to use ψΩ for a moment measure representation in Rd we must extend it with +∞ outside of Ω so
that e−φ∗

Ω remains a probability measure. But this means that this extention is not continuous
in all of ∂Ω, and hence it is not essentially continuous. Therefore have no contradiction with the
results of [CEK15], since their result states uniqueness up to translations of a moment measure
representation with an essentially continuous potential.

From one hand, this case is much less interesting from a strictly mathematical point of view,
since the compactness of the domain makes many arguments easier. However, it is particularly
relevant for numerical applications where one often restricts the problem to a bounded domain.
Furthermore, in this case we obtain stronger stability results as a direct corollary of Theorem 4.1.

Theorem 4.2. Let Ω be a convex and compact subset of Rd. Given two Radon measures
µ, ν ∈ P(Ω) whose barycenters lie at the origin and dim suppµ = dim supp ν = d, let φµ, φν be
maximizers of Jµ,Ω,Jν,Ω respectively. Then, there exists a universal constant Cd,Ω depending
only on the dimension and on the diameter of Ω such that

(4.4) inf
x0∈Rd

∥∥∥ϱφ∗
µ
(·)− ϱφ∗

ν
(·+ x0)

∥∥∥
L1(Rd)

≤ Cd,ΩW1(µ, ν)
1/2

and

(4.5) inf
a∈Rd, b∈R

∥(φµ − φν)− (a · x+ b)∥L1(µλ)
≤ Cd,ΩW1(µ, ν)

1/2,

where µλ = µψλ
is the moment measure of ψλ = ((1− λ)φµ + λφν)

∗ for some λ ∈ (0, 1).

Proof. Consider µ, ν ∈ P(Ω), and consider two convex functions φµ, φν such that

φµ ∈ argmaxJµ, φν ∈ argmaxJν .

Since φµ, φν are optimal Kantorovitch potentials for the L2-optimal transportation problem in
a compact domain, they are both Lipschitz with constant diamΩ. Then by optimality of φµ, for
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the maximization of Jµ, and concavity of Jµ we have that

0 ≤ Jµ(φµ)− Jµ(φν) ≤ ⟨∇Jµ(φν), φµ − φν⟩ = ⟨ν − µ, φµ − φν⟩
≤ Lip(φµ − φν)W1(µ, ν),

which can then be easily combined with Lemma 4.1 to obtain bounds on the distance between
the sets argminEµ, argminEν , and between argmaxJµ, argmaxJν . □

Remark 4.3. A similar argument can be employed to estimate the distance between the sets
argminEµ,α, argminEν,α in the L1(Rd) topology. Indeed, for all α ≥ 0 the functional Jµ,α

remains concave, with an application of the classical Prékopa-Leindler inequality. Hence taking
φµ,α, φν,α such that

φµ,α ∈ argmaxJµ,α, φν,α ∈ argmaxJν,α,

these are also Lipschitz continuous, and we have the same bound

0 ≤ Jµ,α(φµ,α)− Jν,α(φν,α) ≤ ⟨∇Jµ,α(φν,α), φµ − φν⟩ = ⟨ν − µ, φµ,α − φν,α⟩
≤ diamΩW1(µ, ν).

Which can also be used as in Lemma 4.1 to bound the distance argminEµ,α, argminEν,α, but
not of argmaxJµ,α, argmaxJν,α, since for α > 0 the argument via quantitative estability of
Brascamp-Lieb does not apply.

4.2. Convergence rates w.r.t. regularization parameter. We are also able to prove results
on the sharp rates of convergence of regularized moment measures introduced in [DF25] to the
classical ones from [CEK15].

Recall that for each α > 0, the regularization present in the energies Eµ,α and Jµ,α induces
a unique minimizer/maximizer pair (ϱα, φα) associated with the moment regularized measure
representation of µ. Therefore, it makes sense to study the convergence of these pairs as α → 0
by estimating the distance of ϱα to Mµ and of φα to Nµ.

Theorem 4.4. Fix a Radon measure µ ∈ P1(Rd) whose barycenter lies at the origin and such
that dim suppµ = d. Then there exists a constant Cd,µ depending on the ambient dimension and
on µ such that

(4.6) distL1(Rd) (ϱα,Mµ) ≤ Cd,µα
1/2,

where the Gibbs probability measures ϱα ∝ e−(φ∗
α+

α
2
|x|2), give the regularized moment measure

representation for µ.
In addition, let (φα)α>0 be the family of uniquer maximizers of (Jµ,α)α>0. Then, for each α,

there exists λ ∈ (0, 1/2) such that, setting v def.
= φ− φα and φt

def.
= φ+ λv, it holds that

(4.7) distL1(µλ) (φα,Nµ) ≤ Cd,µα
1/2,

where µλ = µφ∗
λ

is the moment measure associated with the interpolation (φλ)
∗.

Example 4.5. Set Sλ(x) = λx, and consider the scallings

µλ = (Sλ)♯µ, and ϱλ = eψλ with (φλ)♯ϱλ = µ.

Then one can check that φλ(·) = λdφ(λ·), where φ is the moment map. As a result we have that

M2(µλ) = λ2M2(µ), M2(ϱλ) = λ−2M2(ϱ),

so it is perfectly possible that M2(ϱ) explodes while M2(µ) remains bounded.

For the purposes of Theorem 4.4, the only important fact is that M2(ϱµ) is finite, which is
always the case for log-concave measures, but in the next section we identify conditions on µ
which ensure that M2(ϱµ) can be controlled uniformly.

As we will see in the proof below, the constant Cd,µ = CdM2(ϱ), where ϱ = ϱµ, the Gibbs
measure associated with the moment measure representation of µ. Therefore, the constant
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depends on µ only via the second moment of ϱµ, which is finite since ϱµ is log-concave, but
cannot be controlled in general only by bounding the second moment of µ as the following
example shows.

Proof of Theorem 4.4. The goal is to compare the Jµ energies of φα, the unique maximizer
of Jµ,α for α > 0, and the maximizer φ of Jµ such that ϱ = e−φ

∗ is a centered probability
measure.

From Theorem 2.4, we know that the unique minimizer of Eµ,α can be obtained from φα as

ϱα ∝ e−(φ∗
α+

α
2
|x|2),

and similarly for the case α = 0, we can map φ into a minimizer of Eµ defined as the Gibbs
probability measure

ϱ ∝ e−φ
∗
.

To compare the Jµ energies, we start by recalling the regularized energy Jµ,α and noticing
the following trivial bound

Jµ,α(φα) = log

ˆ
Rd

e−(φ∗
α+

α
2
|x|2)dx−

ˆ
Rd

φαdµ

≤ log

ˆ
Rd

e−φ
∗
αdx−

ˆ
Rd

φαdµ = Jµ(φα).

Therefore we have that

Jµ(φ)− Jµ(φα) ≤ Jµ(φ)− Jµ,α(φα) = Eµ,α(ϱα)− Eµ(ϱ)

≤ Eµ,α(ϱ)− Eµ(ϱ) = αM2(ϱ) = Cµα,

where the first equality comes from the strong duality formula between the minimization of Eµ,α
and the maximization of Jµ,α proved in Theorem 2.4. Since ϱ is a log-concave measure, its
second moment is finite and hence a constant Cµ depending only on µ.

Combining this estimate with Lemma 4.1, the result follows. □

4.3. Stability over Rd. The stability result in a compact setting proven in Section 4.1 covers
most cases of applications, since for computational purposes one usually needs to truncate the
measures to a compact domain. Although the restriction of µ to a compact domain is not
problematic due to many interesting cases already being in this setting, the Gibbs measure ϱµ
is in general supported over the whole Rd. Therefore, it is interesting to obtain stability results
also for moment measure representations over the whole Rd.

As mentionned above, this was achieved for regularized moment measures in [DF25], using
the strong geodesic convexity of the functional Eµ,α. The convergence results from Section 4.2
depending on M2(ϱµ) give a hint on why the stability for regularized moment measures appears
to be a more direct issue, as in this case one can explect to control the second moment of the
Gibbs measure ϱµ,α independently of µ, thanks to the regularization term. Without such a
uniform control, we cannot know if the constant multiplying any quantitative stability inequality
will remain bounded. Example 4.5 above shows that we cannot in general bound M2(ϱµ) in
terms of M2(µ).

In this section, we identify two very natural classes of measures µ, for which M2(ϱµ) remains
uniformly bounded. We can then leverage the stability proof via geodesic convexity from [DM23]
and the convergence rates in Theorem 4.4 to obtain quantitative stability results for moment
measure representations over Rd in terms of the W2-distance.

The first approach is to impose a lower bound on the quantity

(4.8) Θ(µ)
def.
= inf

θ∈Sd−1

ˆ
Rd

|y · θ|dµ(y),

that measures the minimal spread of the measure µ in all directions, beging therefore very natural
for the study of moment measures. We shall also require that µ is supported on a convex and
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compact set Ω, so that we can control the Lipschitz constant of the potential φ∗
µ. Therefore, we

consider the class of measures defined as

(4.9) Kϑ
def.
=

{
µ ∈ P(Ω) :

µ is centered,
Θ(µ) ≥ ϑ

}
.

The fact that µ ∈ P(Ω) implies that the potential φ∗
µ is Lipschitz continuous with constant

L = diam(Ω). This is not sufficient to control M2(ϱµ), but enforcing the lower bound on Θ(µ)
we have

(4.10) Θ(µ) = inf
θ∈Sd−1

ˆ
Rd

|∇φ∗
µ(x) · θ|e−φ

∗
µ(x)dx ≥ ϑ.

Combining this with the Lipschitz continuity of φ∗
µ, we can employ the following growth estimate

for convex functions due to Klartag [Kla14].

Lemma 4.6. [Kla14, Lemma 2] Suppose that ψ : Rd → R is a L-Lipschitz, convex function such
that ϱ ∝ e−ψ has barycenter at the origin. If there exists c > 0 such that

inf
θ∈Sd−1

ˆ
Rd

|∇ψ(x) · θ|e−ψ(x)dx ≥ c,

then there exists ℓ, β1, β2 depending only on d, L, c such that

ℓ|x| − β1 ≤ ψ(x) ≤ L|x|+ β2, for all x ∈ Rd.

In particular, the second moment of ϱ is bounded by a constant depending only on d, L, c.

We can now state our quantitative stability result for measures in Kϑ.

Theorem 4.7. Given Ω a convex and compact subset of Rd and ϑ > 0, then for every p > 2
there exists a constant C such thats for all µ, ν ∈ Kϑ

(4.11) distW2 (Mµ,Mν) ≤ CW2(µ, ν)
p−2
6p−4 ,

where C depends only on the d, diamΩ, ϑ, and grows linearly in p.

Proof of Theorem 4.7. The proof consists of combining the convergence rates of regularized mo-
ment measures from Theorem 4.4 with strong geodesic convexity argument from [DM23] and
the uniform bounds on the second moment that we obtain for ϱµ whenever µ ∈ Kϑ through
Lemma 4.6.

First, notice that for all µ ∈ Kϑ and α ≥ 0, letting ϱµ,α denote the Gibbs measure associated
with the (regularized if α > 0) moment measure representation of µ, we have that M2(ϱµ,α) ≤
CΩ,ϑ,d, where the constant depends only on Ω, c and d. This is a direct consequence of Lemma 4.6,
since the potentials φ∗

µ,α are all diam(Ω)-Lipschitz continuous.
For the reader’s convenience, we detail the part of [DF25]’s strong geodesic convexity argument

that is relevant to us. Given µ, ν ∈ Kϑ and some α > 0, let (ϱα,t)t∈[0,1] be the constant speed
geodesic with endpoints

ϱα,0 = ϱµ,α, ϱα,1 = ϱν,α.

Since both Eµ,α and Eν,α are α-strongly geodesically convex functionals over P2(Rd), we have
that

Eµ,α(ϱµ,α) ≤ Eµ,α(ϱα,1/2) ≤
1

2
Eµ,α(ϱµ,α) +

1

2
Eµ,α(ϱν,α)−

α

8
W 2

2 (ϱµ,α, ϱν,α),

and similarly for Eν,α. Rearranging we get
α

4
W 2

2 (ϱµ,α, ϱν,α) ≤ Eµ,α(ϱν,α)− Eµ,α(ϱµ,α),

α

4
W 2

2 (ϱµ,α, ϱν,α) ≤ Eν,α(ϱµ,α)− Eν,α(ϱν,α).
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Adding these inequalities, and recalling that T (µ0, µ1) = −W 2
2 (µ0, µ1) +M2(µ0) +M2(µ1)

and W 2
2 (µ0, µ1) ≤ 2M2(µ0) + 2M2(µ1), we obtain
α

4
W 2

2 (ϱµ,α, ϱν,α) ≤ T (ϱν,α, µ)− T (ϱν,α, ν) + T (ϱµ,α, ν)− T (ϱµ,α, µ)

=(W2(ϱν,α, µ) +W2(ϱν,α, ν))(W2(ϱν,α, µ)−W2(ϱν,α, ν))

+ (W2(ϱµ,α, ν) +W2(ϱµ,α, µ))(W2(ϱµ,α, ν)−W2(ϱµ,α, µ))

≤(W2(ϱν,α, µ) +W2(ϱν,α, ν) +W2(ϱµ,α, ν) +W2(ϱµ,α, µ))W2(µ, ν)

≤CΩ,ϑ,dW2(µ, ν),

where we have used that for any µ, ν ∈ Kϑ, all second moments above are uniformly bounded
by a constant depending only on Ω, ϑ and d. In particular, this gives an explicit behaviour on α
for the bound proven in [DF25, Theorem 3.1] for the particular case of µ, ν ∈ Kϑ, i.e.

(4.12) W2(ϱµ,α, ϱν,α) ≤ α−1/2CΩ,ϑ,dW2(µ, ν)
1/2.

To finish the proof we need to exploit the explicit rates of convergence of regularized moment
measures from Theorem 4.4. The issue is that these convergence rates concern the L1 distance
between ϱµ,α and Mµ. But for absolutely continuous measures with bounded p-moments, the
L1 norm can be used to control Wasserstein distances. There exists a constant Cp,q such that

(4.13) Wq(ϱ0, ϱ1) ≤ Cp,q(Mp(ϱ0) +Mp(ϱ1))
1/p ∥ϱ0 − ϱ1∥1/q−1/p

L1 ,

see Lemma 2.1 in Section 2.
As a result, combining (4.13), with the stability of regularized moment measures from (4.12),

and the explicit rates of convegence from 4.4, we let ϱµ = ϱµ(·+ xα) ∈ Mµ be a Gibbs measure
associated with the moment measure representation of µ such that

∥ϱµ,α − ϱµ∥L1(Rd) ≤ 2distL1(ϱµ,α,Mµ),≤ CΩ,d,ϑα
1/2,

and similarly for ϱν . Then, for every α > 0, we have

distW2(Mµ,Mν) ≤W2(ϱµ, ϱν) ≤W2(ϱµ, ϱµ,α) +W2(ϱµ,α, ϱν,α) +W2(ϱν,α, ϱν)

≤ C
(
α1/4−1/2p + α−1/2W2(µ, ν)

1/2
)
,

where the constant C above depends on Ω, ϑ, d, p, more specifically it depends on Mp(ϱµ)
1/p,

which behaves linearly in p, so that the constant explodes as p→ ∞.
But for every finite p > 2, we can optimize the above estimate in α to obtain the best possible

bound, which is achieved for
α =W2(µ, ν)

2p
3p−2 ,

which gives
distW2(Mµ,Mν) ≤ CW2(µ, ν)

p−2
6p−4 ,

for all p > 2, with a constant C depending on Ω, ϑ, d, p. □

Proposition 4.8. Inequality (4.11) never holds with a constant independent of ϑ.

Proof. Suppose that there was a constant C, independent of ϑ, such that (4.11) holds for all
moment measures µ, ν. Then consider the one-dimensional measure over the segment L =
[0, 1]e1 ⊂ Rd

µ = H 1 L,

and a sequence of normalized mollifications (µε)ε>0, so that W2(µ, µε) → 0.
If a inequality such as (4.11) held with a constant independent of ϑ, then we would have that

ϱε = e−ψε would be Cauchy in W2 as ε→ 0, and hence would converge to some limit measure ϱ.
Since all ψε as L-Lipschitz, we can extract a locally uniformly converging subsequence, so that
ψε → ψ locally uniformly, and hence ϱ = e−ψ.
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In addition, γε
def.
= (id,∇ψε)♯ϱε is the optimal transport plan between ϱε and µε, and since

W2(µε, µ) → 0 we have that γε converges weakly to some limit plan γ. By stability of optimal
transport plans, γ is an optimal transport plan between ϱ and µ and must be given by (id,∇ψ)♯ϱ.
But then ψ is L-Lipschitz and a moment measure representation for µ, which is impossible since
µ is supported on a hyperplane. □

Remark 4.9. The exponent p−2
6p−4 in Theorem 4.7 can be made arbitrarily close to 1/6 by taking

p large enough, at the cost of getting a worse constant C, which behaves linearly at p. It is
somewhat natural to expect a worse exponent that 1/2 obtained in [DF25] for regularized moment
measures, since the regularization term improves the second moment of solutions. However, it is
not clear whether the limiting exponent 1/6 is optimal or not.

The second class of measures for which we can derive quantitative stability results is obtained
by bounding the curvature they induce. Given Λ > 0 we define

(4.14) KΛ
def.
=
{
µ ∈ Pac(Rd) : µ ∝ e−V , where D2V ≤ Λid

}
.

In (4.14), the condition D2V ≤ Λid is understood only on domV and we do not make any
convexity assumption. In this case that µ has bounded curvature, we can expect that the Gibbs
measure ϱµ has a stronger geometry than the log-concavity of the orginal measure. Indeed we
shall show that the optimal potential φ∗

µ that yields the moment measure representation of µ is
Λ−1/3-strongly convex.

This improved strong-convexity result will be obtained by bootstraping the suplementary regu-
larity enjoyed by the regularized moment measure representation in conjunction with Caffarelli’s
contraction thereom, a global Lipschitz regularity result for the optimal transport between log-
concave measures. See for instance the original works of Caffarelli [Caf92, Caf00], or [GS25]
for a modern approach via entropic regularization and the references therein. For the reader’s
convenience, we recall that it is stated as follows:

Theorem 4.10 ([Caf92,Caf00]Caffarelli’s contraction theorem). Let µ, ν ∈ Pac(Rd) be such that
domµ = Rd, dom ν is convex, and satisfying

(4.15) µ ∝ e−V , ν ∝ e−W , where D2V ≤ Λid and D2W ≥ λid,

where Λ, λ > 0. Then the L2-optimal transport map T♯µ = ν is Lipschitz continuous with constant√
Λ/λ.

With this result we prove the following regularity result for moment measures associated with
elements of KΛ.

Theorem 4.11. For any µ ∈ KΛ, let φ∗
µ be a potential inducing the moment measure represen-

tation µ =
(
∇φ∗

µ

)
♯
e−φ

∗
µ . Then φ∗

µ is Λ−1/3-convex.

Proof. Fix some α > 0 and consider the regularized moment measure representation of µ as

µ = (∇φ∗
α)♯e

−(φ∗
α+

α
2
|x|2) = (∇φ∗

α)♯ϱα,

so that ϱα ∝ e−Vα where D2Vα ≥ αid. In addition, from Brenier’s Theorem ∇φα is the L2

optimal transportation map from µ to ϱα.
From Caffarelli’s contraction theorem we have that

Lip(∇φα) ≤
√

Λ

α
,

which in turns implies further regularity for the Legendre transform φ∗
α, being therefore

√
α/Λ-

strongly convex. This implies a better bound for strong convexity of Vα and can be exploited
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once again in Caffarelli’s contraction theorem, implying that

Lip(∇φα) ≤
√

Λ√
α/Λ

=
Λ1/4

α1/4
.

This argument can be bootstrapped indefinably, and one can check by induction that at the
k-th time it yields

Lip(∇φα) ≤
ΛSk

α1/2k
and φ∗

α is
α1/2k

ΛSk
–strongly convex,

with Sk =
∑k

i=1
(−1)i+1

2i
. Passing to the limit as k → ∞, we obtain that for all α > 0

Lip(∇φα) ≤ Λ1/3 and φ∗
α is Λ−1/3–strongly convex.

In particular, this implies that ∇φα converges locally uniformly to ∇φµ a maximizer of Jµ,
so that φ is also Λ1/3-Lipschitz, so that the optimal potential φ∗ is Λ−1/3–strongly convex, as
we wanted to prove. □

Besides the relevance to obtaining another quantitative stability result for moment measures
in the class KΛ, see Theorem 4.13 below, this result is particularly interesting for applications
in sampling. Whenever µ ∝ e−V is log-concave there are efficient sampling algorithms based on
the Lagevin dynamics associated with the potential V [Che23,CNWR25,DCWY19]. In the case
that V is strongly convex, its associate Gibbs measure statisfies a log-Sobolev inequality as we’ve
learned from the Bakry-Émery technique [BGL13] and as a result implies exponential covergence
rates for the associated Langevin dynamics [MV00]. This can then be exploited in sampling
algorithms, see [CKSV] for a recent application or the recent monographs [Che23, CNWR25].
With only the upper bound D2V ≤ Λid, the rate of convergence of the Langenvin dynamics,
and hence of sampling algorithms, can be only polynomial if any convergence guarantee is even
available. However, if the moment measure representation for µ has been computed, we know
from Theorem 4.11 that its potential φ∗

µ is strongly convex, so we can use a Langevin-based
sampling algorithm with exponential convergence rates to obtain a sample of the (strongly)
log-concave measure ϱµ and map this sample into a sample of µ directly.

In Lemma 4.6 we have exploited the lower bound on Θ(µ) aligned with the Lipschitz continuity
of the moment map induced by µ to bound the moments Mp(ϱµ). This can even more easily
be achieved for µ ∈ KΛ by exploiting the strong convexity result from Theorem 4.11 and the
following bound on the p-moments.

Lemma 4.12. Let ψ be a centered, λ-strongly convex function. Then for every p > 2 the p-
moment of its associated Gibbs measure can be bounded as

Mp(e
−ψ)

1/p
=

(ˆ
Rd

|x|pe−ψ(x)dx
)1/p

≤ Cp,

where C is a constant depending only on λ and the dimension d.

Proof. Since the λ-strongly convex function ψ is centered, it is a known fact in convex analysis
that:

(4.16) ψ(0) ≤ d+ inf ψ = d+ ψ(x∗)

where x∗ denotes its minimizer. This is proven for instance in [Fra97]. As a result of the λ-strong
convexity of ψ, and the fact that ∇ψ(x∗) = 0 that

(4.17) ⟨∇ψ(x), x− x∗⟩ ≥ λ|x− x∗|2.
On the other hand, the divergence theorem gives that

(4.18)
ˆ
Rd

div
(
|x− x∗|p−2(x− x∗)

)
e−ψdx =

ˆ
Rd

|x− x∗|p−2(x− x∗) · ∇ψ(x)e−ψdx.
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Now define the following quantity

V (p)
def.
=

ˆ
Rd

|x− x∗|pe−ψ(x)dx.

Combining identities (4.17), (4.17), and developing the divergence, we obtain that

V (p) ≤ (d+ p− 2)

λ
V (p− 2).

Noticing that V (0) = 1, by induction we obtain that for all k ∈ N

V (2k) ≤ λ−k
k−1∏
i=0

(d+ 2i) = λ−k2k
Γ
(
d
2 + k

)
Γ
(
d
2

) ,

where Γ corresponds to the gamma function.
Using Hölder’s inequality, in the form ∥f∥pp ≤ ∥f∥(1−t)p0p0

∥f∥tp1p1 , for a convex combination
p = (1− t)p0 + tp1, we can interpolate the above inequality for any p > 2, by choosing p0 = 2k
and p1 = 2(k+1) for a convenient k such that p ∈ (2k, 2(k+1)). Due to Stirling’s formula, this
yields an estimate such that (ˆ

Rd

|x− x∗|pe−ψ(x)dx
)1/p

≤ Cp,

for a constant C depending on d and λ.
To conclude, we need only to bound |x∗|, this can be done with (4.16) and the strongl convexity.

Indeed, using once again that ∇ψ(x∗) = 0, we have

λ|x− x∗|2 ≤ ψ(0)− ψ(x∗) ≤ d.

Hence, combing all these estimates we get that

Mp(e
−ψ)

1/p ≤
(ˆ

Rd

|x− x∗|pe−ψ(x)dx
)1/p

+ |x∗| ≤ Cp+

√
d

λ
,

and the result follows. □

Combining this and the reasoning of Theorem 4.7 we can obtain a stability result for elements
of KΛ with a completely analogous proof.

Theorem 4.13. Given Λ > 0, then for each p > 2 there exists a constant C such that, for all
µ, ν ∈ KΛ it holds thats

(4.19) distW2 (Mµ,Mν) ≤ CW2(µ, ν)
p−2
6p−4 ,

where C depends only on the d, Λ, and grows linearly in p.
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