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ABSTRACT. By employing the recently obtained sharp stability versions of the Prékopa—Leindler
inequality, we are able to obtain a sharp quantitative stability version for the Brascamp-Lieb
inequality, as well as several different results on the stability of moment measures.
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1. INTRODUCTION

In recent years, the fields of calculus of variations and functional inequalities have become
deeply interwined. If from one hand, many of the inequalities used in analysis and probability
have deep variational interpretations, functional and geometric inequalities are fundamental in
the study of many variational problems. To name a few exemples we can cite the use of Sobolev
type inequalities in the stability of matter ,, the use of isoperimetric type inequalities
in the study of shape optimization problems , and more recently the use of Brascamp-

Lieb [BL76] and Prékopa-Leindler inequalities [Pré71}[Pre73|

Lei73| has become fundamental on

the quantitative stability theory of optimal transport [DM23

[LM24][Let25).

In the present work, we study the quantitative stability of t

he Brascamp-Lieb inequality and of

moment measures — as in, for instance, [BL76,|CEK15,San16

| — and their deep connections. In-

deed, that connection has not only been made rigorous several
1

times over (see for instance [Klal4]
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where a regularity theory for moment measures is combined with a suitable Brascamp-Lieb in-
equality to obtain bounds on a Poincaré constant [KL25|), but they also have a common denom-
inator in optimal transport theory; see |Sanlb,|Vil09, ABS21|.

More specifically, the Brascamp-Lieb inequality is not only ubiquitous in the modern stability
theory of optimal transport, but it can also be derived with linearization arguments of trans-
portation type inequalities, as done for example in [CE17]|. On the other hand, in [Sanl16| it has
been showcased how to obtain moment measures with the minimization of functionals coming
from optimal transport.

By relying on the recent advances in the quantitative stability of the Prékopa-Leindler in-
equality in a series of recent works [BFR23, FR24, BFR25,|FvHT25|, we are able to obtain both
a sharp stability version of the Brascamp-Lieb variance inequality and novel explicit stability
estimates for moment measures. In spite of the fact that both objects can be studied from many
different perspectives, a common theme between them is that both can be approached from the
viewpoint of the Prékopa-Leindler inequality.

Indeed, we mention, for instance, the classical work |[BLOO| where a proof of Brascamp-Lieb’s
variance inequality with a linearization argument using Prékopa-Leindler is provided, as well
as [CEK15| (or Section [2.2] below), where a variational approach for moment measures is demon-
strated, consisting on the maximization of a functional which is proven to be concave with the
same functional inequality.

1.1. Stability of the Brascamp-Lieb variance inequality. In order to describe our main
contributions, let us first recall the Brascamp-Lieb variance inequality [BL76,BL00|: given a
convex function ¢ : R? — R, let o o e ¥ be its associated Gibbs measure. Then for every
sufficiently smooth function f, the following quantity

def.

(1.1) (1) [ (D) VLV do = Varg() 2 0

is non-negative. It is well known that the optimal functions for such inequality — which make
0L (f) vanish — are the affine functions on the geometry induced by the log-concave measure p,
i.e. f(x)=a-Ve(x)+b; see for instance [CEL7| or the derivation at the start of Section

Given the characterization of the optimizers of a functional inequality, the question of stability
consists of: under which topology can we estimate the distance of f to the manifold of optimizers?

Results of this type have increasingly gained importance over the past two decades. Indeed,
the question of stability has been extensively studied in the case of the isoperimetric inequality
[FMPO8, FMP10|, as well as in other geometric inequalities such as the Faber-Krahn inequality
[IBDPV15|, and, more recently, in [FMP10LFJ17,FvHT23|FvHT24,vHST21,vHST23| the Brunn-
Minkowski inequality, in [DT16,[DEF™25,[BK25| for Sobolev and log-Sobolev inequalities and
relations with non-linear evolution equations, in [BFR23|FvHT25,FR24| for the Prékopa-Leindler
and Borell-Brascamp-Lieb inequalities.

In that vein, our first main contribution is a sharp L' —based stability estimate for the Brascamp-
Lieb variance inequality. In order to state it, we define the finite dimensional manifold of optimal
functions

def.

(1.2) OpL = {f:RY 5 R: f(z) = a-Ve(x) + b, for some a € R, b e R}.
Clearly, if f € OpL, then the parameter b must be given by E,_ f since

Eo, f = / fdo, =a- / Vo(z)e Pde+b=a- V(e ?)dx +b="b.
R4 Rd R4

Our first main result must then be an estimate of the distance of a function f to the manifold
of optimizers
def

(13)  distp(f0) E inf 1 =gl = inf |1~ (@ Ve +Eg )] )

in terms of the deficit of the Brascamp-Lieb inequality:
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Theorem 1.1. Let ¢ : RY — RU {400} be an essentially continuous and convex function, and
Jpa€™¥ < 400 so that the Gibbs mesuare o, is well defined as in (1.4).

Then, there exists a universal constant Cy depending only on the ambient dimension such that

dist 1o, (f, Op1) < Cadpr(f)"/*?
for all locally Lipschitz functions f € L*(0,).

As the classical Brascamp-Lieb is independent of the dimension, the first efforts in the lit-
erature into improving it were focused on next order terms that would exploit the ambient
dimension [Har08, BGG18|. These results are equivalent with bounding the deficit from below
with a dimensional term which vanishes in the manifold of optimizers for this inequality. A
similar improvement was also obtained in |[CE17], by measuring the distance to the manifold of
optimal functions with a L? term in a geometry that compensates for the curvature induced by
the potential V. This is very natural to expect for the Brascamp-Lieb inequality as it is closely
related to the spectral gap of the diffusion operator induced by VV that is central to the carré du
champ method |BE06,BGL13], see also Section We refer the reader to [LLR25| for a particular
version for the Gaussian Poincaré inequality with relations to uncertainty principles.

It is worth pointing out that not only the present work is the first that proposes a quantitative
stability result for the Brascamp-Lieb variance inequality in full generality, but that the result is
sharp in terms of the dependence on dgr, on the right-hand side, with constant independent of .
In particular, the independence of our stability results on the convex function provides us with
the perfect platform to apply Theorem to deduce several novel results about the stability
of moment measures, as we shall see below.

Our method of proof will be based on the approach of Bobkov and Ledoux [BL00|. A main
new twist in our proof, however, is the usage of the newly developed sharp stability estimates
for the Prékopa-Leindler inequality stemming from the work of A. Figalli, P. van Hintum and
M. Tiba |[FvHT25|, together with a careful use of the geometry of the functionals involved in
order to conclude. This explains our result being stated in terms of the L'-topology, which is

natural viewing the Brascamp-Lieb inequality as a geometric inequality steaming from Brunn-
Minkowski’s.

1.2. Stabiliy for moment measures. Our next few results use the previous machinery to ob-
tain sharp quantitative stability results for moment measures. Using Prékopa-Leindler, we obtain
stability of the Gibbs measures in the moment measures representation, while the quantitative
version of Brascamp-Lieb yields stability of the potentials.

Given a convex function ¢, we recall the notation of its associated Gibbs probability measure

def. €7

e 7[Rd 6—90 .
On the other hand, given 9 also convex, which we will view informally as in the dual space of
variables of ¢ by frequently considering ¢ = ¢*, we define the moment measure associated with

P as

(1.5) oy = (V)04

In [CEK15/San16], it was proven that for any measure u € £;(R), that is a Radon probability
measure over R® with finite first moments, admits a moment measure representation, there exists
a convex and essentially continuous (see the definition in Section potential ¢, such that
holds. In addition, it is also unique up to translations. Using the Prékopa-Leindler inequality, it
was shown in |[CEK15| that the moment measure of ¢ is p if and only if its Legendre transform

(1.4) Qp

def. . .
@ =" 1* is a maximizer of

(1.6) Julp) = log / e ¥ de — / edp.
R4 R4
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The same result was recovered in [Sanl6| using optimal transport, but this time for a dual
perspective: a measure g is the Gibbs measure in (|1.5)) if and only if it minimizes

(17) 5.0 [ Tog a(e)dae) + Tle.p).

where 7T is the maximal correlation formulation of the quadratic optimal transport problem. The
reader is referred to Sections [2.I] and for more details on optimal transport theory and for
general results on moment measures.

The quantitative stability question that we wish to answer then becomes: given two measures
i, v can we quantify the distance between either 1,1, or between g, 0,. Since the variational
characterization described above is necessary and sufficient, one can only expect to answer this
question as an estimate on the distance to the optimal sets defined as

(1.8) M, " argmin Euy, Ny, " argmax P,

which can be characterized as follows: fixed some reference gy € M, and g € N, the manifolds
of optimizers can be expressed as

M, = {00(- — x0) : 2o e R},
N,={po+ (a-z+Db):acR? becR}.

We start with the following Theorem, which is a backbone to the stability results that will
follow. We hope it can be used to other purposes, such as deriving explicit convergence rates for
numerical algorithms for computing moment measures.

(1.9)

Theorem 1.2. Given a Radon measure u € P21 (RY) whose barycenter lies that the origin and
dimsupp p = d, let ¢ be a maximizer of #,. Then for any convexr function ¢ : R? — RU {+o0}
it holds that

(1.10) dist 1 (ga) (0%, My.) < Cal_Zu(@) — Fu(e)/2.

In addition, there exists X\ € (0,1/2) such that, setting v det @ — @ and @) et @+ v, it holds

that
(1.11) distz1 () (9. Nu) < Ca (Zu(@) — Zu(@)'?,

where jix = sy is the moment measure associated with the interpolation (¢x)*.

We note that this result may be regarded as a Polyak-Lojasiewicz type inequality for the
functional ¢,,. More precisely, estimate gives a way of using this functional to measure
the distance of any ¢ to the class of maximizers of ¢,,. This is done by establishing a connection
between the equality case of the Brascamp-Lieb inequality and the invariance of the functional
7, with respect to the addition of affine functions. Estimate (4.1) relates the invariance of
the moment measure representation with respect to translations to the equality cases in the
Prékopa-Leindler inequality, estimating the distance of g, to the set of minimizers of &,.

In spite of the fact that Theorem [I.2] provides us, by itself, with a novel quantitative way to
show that almost maximizers of the functionals ¢, and &), must indeed converge to the original
potentials, we highlight that its true scope lies in the deeper applications to the theory of moment
measures it unveils, as pointed below.

Stability in a compact domain. Using Theorem [I.2] we are able to obtain several quantitative
stability results for moment measures in different contexts. When the moment measure and the
associated Gibbs measure in are restricted to a compact domain we obtain a strong stability
result controlling the L' distances between Ou, 0y and @, @, with the 1-Wasserstein distance of
w, v; this is the content of Theorem [£.2]

In spite of the fact that compactness allows for a fairly simpler mathematical structure, di-
verging from the objects described by the existence theorem by |[CEK15,San16|, we remark that
such a result means a remarkable control especially for numerical applications, as we are able
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to control a strong norm with a distance which metrizes a fairly weak convergence of Radon
measures, see Section [2.1] for more details on these topologies.

Rates of convergence for quadratic reqularization. The classical definition of moment measures
from has strong motivations from convex and toric geometry |[BB13|, but variations thereof
have recently found several applications to sampling and generative models [VBC25|. For such
applications, the essential property of moment measures is their capacity of representing a given
measure via the pushforward of a log-concave distribution through the gradient of the same
convex convex potential.

This can also be achieved with the quadratically regularized moment measures recently pro-
posed in [DF25]. That is, given p € 221(R?) there is a convex potential 1), such that

(1.12) = (Vzba)ﬁga, where 9, e*(%ﬁ%W);

see also Section

By introducing the quadratic regularization, the quantitative stability investigated in [DF25|
turns out to become a bit simplified for a few reasons: first, we mention that the uniqueness
modulo translations is replaced by simply uniqueness. This way, the quantitative stability can be
understood without the distance to a certain manifold of optimizers. Secondly, the regularization
makes the functional corresponding to (|1.7]) strongly geodesically convex in Wasserstein space.
On the other hand, the stability is formulated with the 2-Wasserstein distance.

For these reasons, both of theoretical and of applied nature, obtaining explicit rates of con-
vergence with respect to the regularization parameter is of great interest. This is achieved once
again by using Theorem [I.2]

Theorem 1.3. Fiz a Radon p € 21(R%) whose barycenter lies at the origin and such that
dimsupp pp = d. Then there exists a constant Cgq,, depending on the ambient dimension and on
W such that

(1.13) dist 1 gy (0 My) < Cypa/?,

for oq given in (1.12)).

In addition, set @q et Yo, where 1y is giwven in (1.12)). Then, for each «, there ewists

A € (0,1/2) such that, setting v et © — Qo and ¢ et © + Av, it holds that

(1.14) diStLl(M)\) (gpa,/\/’#) < Cdju()élm,

where jix = gy is the moment measure associated with the interpolation (¢x)*.

Stability in R?. To tackle the stability question in R we can in principle combine the quanti-
tative stability of regularized moment measures arguments based on strong geodesic convexity
from [DF25| with our explicit rates of convergence But, in order to achieve this, we have
to make quantitative the assumption that p is not supported on a hyperplane, otherwise such a
result would allow the construction of a 1 yielding (|1.5)) for such a singular u, contradicting the
existence theory of [CEK15/[Sanl6]. See Propositio for more details on this construction.
Our approach is then to either impose a uniform lower bound on the geometric quantity

O(u) < inf / 0 - yldu(y) > 9,
(p) = Inf y 16 yldu(y) =
or to control the Hessian of the log-density of p. This is done by defining the two classes

def. v is centered,
Ky = {,u e Z(Q): O() > ¥ } for a compact €,

D*V < Aid
The results we obtain can be summarized as follows, where the reader is referred to Section (3]
for more information.

_V .
ef. o eV is centered,
Ky < {u € PRy : H }
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Theorem 1.4. Take IC to be either Ky or KCp. Then for each p > 2 there exists a constant C
such that, for all p,v € K it holds thats

(1.15) distyy, (M, M) < CWa(p,v) 1,
where C' grows linearly in p.

In both cases, our approach is to control the moments of order p of the Gibbs measures g,
uniformly for all elements p of the classes Iy and KCp. With this finer information we can come
back to the strong geodesic convexity arguments for regularized moment measures from [DF25|
and obtain an optimal dependence on « in the quantitative stability results in this case. For
the first class Ky, this can be done with a Lemma [£.6] due to Klartag. For the class Ky, similar
controls on the p-moments can be obtained with a regularity result of moment measures, namely

(1.16) poce "V = (Vl[))ﬁe_w, such that D*V < Aid, then v is A~"/3-strongly convex.

The proof of is done in Theorem @ and is based on a bootstrap argument using
Caffarelli’s contraction theorem |Caf92,|Caf00]. It states that if p is as in and v oc eV
with D2W > Mid, then the optimal transportation map T from j to v is globally Lipschitz with
LipT < /A/\. Since we cannot know in principle that 1 is strongly convex, what we do instead
is consider the quadratic regularized moment measure presentation of u. In this case, the Gibbs
measure has indeed a strongly convex potential, with a modulus of convexity a. This modulus
of convexity can be iteratively increased with successive applications of the contraction theorem,
which yields A=1/3 at the end. Besides the application to the stability of moment measures, we

believe that this result might have important applications in sampling, see the discussion after
the proof of Theorem [£.11]
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2. SOME TOOLS ON OPTIMAL TRANSPORT AND FUNCTIONAL INEQUALITIES

2.1. A primer on optimal transport and Wasserstein distances. The Wasserstein dis-
tances are defined via the value function of the optimal transport problem as

def.

(2.1) W)™ min [ o ypdy(a),

vEl(p,v) JRA xR
where TI(j, ) the set of probability measures over R? x R? whose marginals are respectively p
and v, the so called set o transportation plans. This quantity is finite if and only if g and v have
finite p-moments, M, (u), My,(v) < +oo, where

(2.2) M0 [ e

The reader is referred to [Sanl5}|Vil09| for a complete introduction to optimal transport and
Wasserstein distances, in what follows we introduce its properties that will be useful in the
sequel.
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We are particularly interested in the case p = 2, where the optimal transport problem
has a close relation with convex analysis. This can be easily seen by introducing the maximal
correlation formulation

(2.3) T(p,v) = sup / (z,y)dy=inf /wdu+/ p*dv,
R4 xR4 R4 R4

yE (11,v) ( convex

in such a way that

1 1 1

§W22(Ma v) = §M2(M) + §M2(V) =T (s v).
The infimum on the RHS is attained by a convex function ¢, and Brenier’s Theorem states that
the optimal transportation plan is unique and given by v = (id, V)su, whenever p is absolutely
continuous w.r.t. the Lebesgue measure.

Topological properties of Wasserstein distances. A very important property of Wasserstein dis-
tances is that they metrize the narrow topology of probability measures. A sequence of Radon
probability measures (f,),cy converges narrowly to p if for all f € %,(R?), continuous and
bounded function, it holds that

jf fdun-———+j[ Jdu,
Rd n—oo Rd

and we write yu, —— p. A very important property is that
n—oo

;M,

(2.4) Wy (pon, 1) — 0 if and only if oo
p n—00 Mp(un) —)n_>oo Mp(,u)

In addition, the space of Radon probability measures with finite p-moments @p(Rd) becomes
itself complete and separable when endowed with the topology of W),

This is conceptually very important for the contributions of this work since many of the
quantitative stability results regarding moment measure representations from Section [d] are stated
with respect to the Wasserstein distance Ws. This allows to compare very singular objects with
a weak topology. On the other hand, if we know that two probability measures are also in
Ll(Rd) and have finite p-moments, then we can interpolate the Wasserstein distance with the
L' distance via the following inequality.

Lemma 2.1. Let p,v be two probability densities in L'(R?) with finite p-moments, for some
p > 1. Then, for all 1 < q < p there exists a constant Cp 4 such that

(2.5) Wo(p,v) < Cpo(Mp(p) + Mp(y))l/P g — V||}:/1q_1/p-

Proof. Suppose that p,v have densities f,g, set & et Ilf — gl Li(rd): and define the common
density and the residuals f;, g, as

def. def. def.

h(z) = min{f(z),g9(z)} fr = f—h, g = g—h.
As a result, we observe that
et [ g@de=e [ fade- [ g@de=o.
R¢ R¢ R R¢

so that [pq fr(2)dz = [pa gr(z)dz = /2.
Now, we can construct a transportation plan v € II(u,v) as follows: we first transport the
common part of both densities via the identity map, and to transport the residuals we use the

product measure. More precisely, we set « def £/2 and

of ;.4 . 1
7 (i id)yh + — fr(2)gr (y)dady.
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We then have

Wilen) < [ le—yrten) = [ o= sl (@ ()dedy.

Rd x R4 RdxRA
Ny
To estimate the RHS, we split the integral into two parts as
I'=15L+Is,
- /BRXBR |z — yl|?fr(z)gr(y)dody + /(BRXBR)C & — gl f (2)g, (y)dady.

The first term can be easily estimated as
I < (2R)%0?,

while the second can be estimated as with the p-moments, for any p > ¢ by noticing that for
|z| > R we have |z|? < R?7P|z|P, so that

L <20 / 2|7f, (2)dz + 27 / Iyl99, (y)dy
|z|>R ly>R

< 2 RIPa (My (1) + My(v))
Combining both estimates, we obtain
We(p.v) < (2R)%a + 207 RIP (My (1) + My(v)
Optimizing in R > 0 gives the desired result. O

Geodesic convexity in Wasserstein spaces. Given two probability measures ug, u1 € ,@p(Rd), any
optimal transportation plan ~ yields a natural interpolation between then given by

1t et Ty, where mi(z,y) = (1 —t)z +ty, t<0,1].
It turns out that this interpolation is a constant speed geodesic in the metric space (22,(R%), W},),
see [ABS21}[San15|Vil09] for details.

This allows to define the notion of geodesic convexity for functionals defined over Wasserstein
spaces. A functional .# : Z,(R?Y) — R U {+o0} is said to be geodesically convex if for every
po, 1 € Z,(R%) and any geodesic interpolation p; between them the function t — F (y;) is
convex in the classical sense. It is strictly geodesically convex if the same function is strictly
convex.

The 2-Wasserstein distance is not itself geodesically convex, this is a feature of the geometry
of the Wasserstein space, see [AGS08, Chapter 9|. In fact, it satisfies the opposite inequality.
In [Sanl6, Propositon 3.3|, Santambrogio exploited this fact to show the geodesic convexity of
the maximal correlation functional o — 7 (o, ). This fact is at the heart of the study of moment
measures via optimal transport, as well as the geodesic convexity of the entropy functional defined
as

log od if zd
(26) H(Q) d;f. /]%d 0og odp, 1 Q<< )

400, otherwise,

which follows from McCann’s criterion IMCCQ’FID
Another important example of geodesically convex functionals are the p-moments, 1 — Mp(p),
this follows directly from the convexity of = — |z|P, see [Sanl5, Chapter 7|. In fact, it is easy

LAnd seems to be equivalent ot the Prékopa-Leindler inequality |Pré71}Lei73]|.
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to see that the second moment Ms is even strongly geodesically convex, that is, for any geodesic
interpolation py between pg and g it holds that

(2.7) Ma(ju) < (1= )Mapo) + tMa(r) — 5t~ W3 (o, ).

This property is particularly useful to derive quantitative stability results for minimizers, as done
in [DF25| and will be exploited here.

2.2. General facts on moment measures. In [CEK15|, Cordero-Eurasquin and Klartag gave
a complete characterization of the measures p which admit a meaningful moment measure rep-
resentation. Their analysis goes through the functionals defined as in

They identified that if the potential ) in does not satisfy certain regularity properties,
its moment measure can loose a lot of information. They shed some light on this issue with the
following example: take y € R? a convex body C C R? and consider

w(z) 2 {x'yv ved

400, otherwise.

Then one can readily check that p,, = d,, which does not give much information on the measure
0y, and certainly is not amenable to a quantitative stability result since one can drastically
change the convex set C' and obtain the same moment measure. For this reason they focus
on characterizing measures that admit a moment measure representation with an essentially
continuous and convex function.

Definition 2.2. A convex function ¢ : R — RU {+o00} is said to be essentially continuous if it
is lower semi-continuous and the set of points where it is discontinuous has zero .41 measure.

Lemma 2.3 (|CEK15|). Let ¢ be a conver and essentially continuous function such that 0 <
fRd e ¥ < 400, and such that 0 < fRd e ¥ < 400. Then, its moment measure [y s centered
and its support spans R®. In particular,

inf -6|d > 0.
O e

Alternatively, Santambrogio proposed an optimal transport proof of the same result by ex-

ploring the geodesic convexity of the following functional
. def.

(2.8) ol éulo) = H(o) + T (o, 1),
where H corresponds to the negative entropy functional and 7T denotes Brenier’s formulation
of the quadratic optimal transport problem, or maximimal correlation problem . Santambro-
gio relates both problems and recovers the characterization of moment measures with minimizers
of &),, which are log-concave probability densities whose potential is essentially continuous, thus
recovering the results of Cordero-Eurasquin and Klartag.

More recently, Delalande and Farineli [DF25] studied the quantitative stability of regularized
moment measures, which they define via the unique minimizer of the following functional, which
consists of a second moment regularized version of &,:

(2.9) Erale) = H(o) + Tle.1) + 5 Mao).
Minimizers of the regularized version are now unique and of the following form: there exists 1,
convex such that

On = e~ Wat5121*) onq (Vwa)ﬁe—(%Jr%ImIQ) = L.

A major interest of introducing regularized moment measures is computational; indeed regu-
larizing the functional &), with the second moment term Mj(p) makes it a-strongly geodesicaly
convex in the Wasserstein geometry while preserving the most important feature of the repre-
sentation via moment measures, that is being the push-forward of a Gibbs measure through (a
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perturbation of) its potential’s gradient. For these reasons, its not surprising that the arguments
in [DF25| are based on strong geodesic convexity and actually do not require the dual formulation
of &,.a-

To fully exploit the sharp stability version of Prékopa-Leindler’s inequality, we shall require the
connection of both primal and dual formulations. For this reason we introduce the regularized
dual functional defined for any o > 0 as

(2.10) Fialp) et log/ e_(‘p*Jrgle)dx—/ edp.
R4 R4

In the following theorem, we summarize the contributions from the literature and show a strong-
duality type result with a small adaptation of a remark from Santambrogio in [San16|, but that
will be useful in the sequel. More importantly, we identify a way to map minimizers of &, , into
maximizers of _#, o and vice-versa.

Theorem 2.4 (|[CEK15,San16,DF25|). Let u be a Radon probability measure in 221 (R?) whose
barycenter lies at the origin and such that dimsupp u = d. The following assertions hold:

o For every o > 0 there is strong duality:

(2.11) sup _Zua = —inf &, 4.

o &, admits a minimizer of the form
_ alz2
(2.12) Qa = € et 51215 and (Vwa)ﬁga =N,

where Y, s an essentially continuous and convex function, so that Vi, is the unique
Brenier map from g, to p.
If a > 0 this minimizer is unique; and if @ = 0 it is unique up to translations. In any
case, if 0o 1S a minimizer, defining
def. def. (0%
(2.13) o = U for e = —log oo — 5o,

it follows that @ is a mazimizer of 7, .

. .. def. * - .
o Z.a admits a mazimizer p,, whose Legendre transform v, = ¢} is an essentially

continuous and convex function, and gives the reqularized moment measure representation
for

(2.14) (Vwa)ﬂef(wﬁ%lx\z) =4

If a > 0, the maximizer is unique; whereas if « = 0 it is unique up to the addition of
an affine function.
In any case, if po is a mazimizer, defining o = @7, it follows that

215) ga ' -t 3T
is a minimizer of &, q.

Proof. First let us prove the strong duality type-result. It was already proven in the case . =0
in [Sanl6], we prove it here for general a for completeness and for the reader’s convenience.

First, we compute the Legendre transform of &), . It is defined as a functional over the space
of convex functions as

* et. « : *
&nralf) © sup (f,p) — H(p) — 2/ |z|*dp — inf / © dp+/ dp
R R4 R4

pe P(R4) @ convex

«
= sup —/ pdp +  sup <f_90*_2|x’2’p>_/ log pdp
 convex Rd PE Pac(RY) R
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The supremum on p is attained, and the maximizer is characterized by the following Euler-
Lagrange equations; see [San15]: p > 0 a.e. over R? and

a
logp+ " + 5’1”2 — f = cte,

so that p e~ Hglal’=1) A straightforward computation then gives
Eralf) = sup log/ e~ (5P Ny — / pd.
( convex R4 Rd
As a result, taking f = 0 we get that
su =— inf & .
gaconl\?ex j%a((p) 0€E P (R4) u,a(@)

The existence of minimizers for &), , and maximizers for ¢, , is completely equivalent, as
we will see in the sequel. However, the proof of existence for &, , and general o > 0 has been
done in [DF25|, along with the claimed characterization of minimizers and the relation with
moment measures. Therefore, to be economic the reader referred to this work for a proof of the
second assertion, we only comment that the uniqueness in the case a > 0 stems from the strong
geodesic convexity of the energy, while the functional &, is invariant with respect to translations,
[San16, Prop. 3.1].

Now given a minimizer g, for any a > 0, consider g, as defined above and let us compute

Zu.a(0a) as follows

—(p*+& 2
/ﬂ,a(%pa) = lOg/ e (wa"’g || )dZE _/ SOad/.L
R4 R
= log/ elog Qadx _/ (Padu
R4 Rd
=0
Now using the regularized moment measure representation for p in terms of ¢, = ¢}, and

Fenchel’s identity oo (Vi (z)) = (z, Vi (x)) — ¢k (x), it holds that

Halpa) = _/ QPQ(VL,OZ(x))e_(@Z(Jﬁ)-i-%|x\2)dx
R4

* * o (0%
— [ @ Vo) doa+t [ (o) + GlaP) dea [ loPdes
R4 Rd 2 2 R4
=T (0a;h) =—H(0a)
= _@@u,a(zga)-
As a result, we finally obtain that

sup Zua > Fpaa) = —Eual0a) = —inf &0 =sup Za,

so that ¢, must be a maximizer of ¢, .

Doing the same reasoning, but on the inverse, starting an arbitrary maximizer of _Z, », we can
construct a log-concave probability measure which minimizes &), o, but since those are unique
thanks to the strong geodesic convexity, or at least unique up to a translation in the case o = 0,
we obtain that the maximizers of ¢, , must also be unique, or unique up to adding an affine
function in the case a = 0. U

It can also be shown that the Gibbs measure associated with the moment measure (resp.
regularized moment measure) representation of a given p is a minimizer for &, (resp. &),
see [Sanl6, Prop. 5.1] for classical moment measures, [DF25, Prop. 4.2] and |[CEK15, Thm. §]
for the corresponding statement for the dual functional ¢,,.

The moment measure representation can be seen as a stationarity condition for ¢, and its
maximazation can be studied through its concavity, which is equivalent to the Brascamp-Lieb
inequality. Indeed, its first and second variations are computed as follows:
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Lemma 2.5. The first and second variations of _#, are computed as follows: given two convex
functions g, 1, setting v det »1 — Yo, Pt det o + tv, and the Gibbs probaility measure gur o X

e~ @51 ond its reqularized moment measure pyr o = (V§§);047,a it holds that

d
G wale0 = | wdlingza =)

In addition, defining w(z) < v(Ve*(x)), it holds that
d2

— 2 s\—1
i Fnalio) = Vg, ()= [ (D) Vw0, Vu) dogi o

Proof. For fixed x € R?, we start by computing the first and second time derivatives of o} (z)
with an application of the envelope theorem. This quantity can be shown to be €2 with an
implicit function argument as done rigorously in [DM23].

Let y; be optimal for the supremum defining ¢; (z), that is

(2.16) Y = argmjxx (y, ) — pt(y), so that y = Vgot_l(z) = Vi (z).
yeR

From the envelope theorem we have that

C0i(@) = 0 ((1:2) — @uw)lymy = ~0(VE ().

To compute the second time derivative, we then have
d2

(@) = — SVl () = ~Vo(Vei(e)) -4

Taking derivatives w.r.t. ¢ on the optimality condition defining v, that is = V. (y;), we get
yi = —D*ou(ye) " Volys).
In addition, for the gradient of the quantity w we have that
Vuw(z) = V(o(y)) = D*pf (2)(V) o ;.
Therefore, using that D% (y;)~! = D2y} (x), the previous computation gives

d2 * *\ T
@got (x) = <(D2g0t) 1Vw,Vw>.

We can then compute the first and second time derivatives of #,, (¢ + tv) via derivation
under the integral sign as

d 1 * ) 2 d
d I B L O I N B
dtju7a(sot) Zt \/Rde t 2 < dt¢t> \/Iédv l’L
_/ vd(ﬂtpj,a - N)?
R4

for Z; = [ga e (Pitslel?),
For the second time derivative, we get that

d? A , d?
G Fnalen =2 [ @ttt [ (o062 - fzet) dei

= Vargwt*,a (w) — /

]Rd
The result follows. O

<(D2gpjf) _IVw, Vw> doys a-
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For a = 0, the above computation for the second variation of ¢, gives precisely minus the
deficit of the Brascamp-Lieb inequality. In the case that a > 0 we need to be a bit careful to
perform a Taylor expansion on the Hessian and get the same deficit plus lower order terms in a.
Either way, these computations give a clear intuition on why Cordero-Eurasquin and Klartag’s
characterization should hold, but it does not provide the essential continuity of the potential,
which is at the heart of their statement.

Remark 2.6. More importantly to our purposes, it becomes clear that having access to a sharp
quantitative stability version of Brascamp-Lieb’s inequality shall give stability results for the
potentials of moment measure representations. As discussed in the introduction, there are a few
next order expansions of the Brascamp-Lieb inequality in the literature |[CE17, BGG18|Har08|.
However, not only our Theorem is more adapted to our purposes as we show that the deficit
dpr, controls a distance, but also we do it with a multiplicative constant Cy that is independent
of the measure g,. This last feature is crucial for the applications to moment measures, as we
shall see below.

2.3. State of the art on the Prékopa-Leindler inequality. The original version of the
Prékopa-Leindler inequality was initially proposed independently by Prékopa in |[Pré71}/Pre73|
and Leindler |Lei73| and can be stated as follows: given a triplet of measurable functions f, g, h :
R? — R, such that for a given parameter s € (0,1) the so-called Prékopa condition holds

(2.17) F(2)g(y)' ™" < sz + (1 — s)y) for all 2,y € RY,

then we have the following bound

(2.18) < 5 f(x)dx>s< /R dg(m)dx) - < /R h(z)de.

This inequality is a functional generalization of the Brunn-Minkowski inequality, for which many
stability results have been derived, see for instance the seminal work |[FMP10|, where stability
version of such geometric inequalities have been derived.

A stability version for the Prékopa-Leindler inequality quantifies how functions nearly sat-
isfying the equality case must be close to an optimal log-concave profile. The result takes the
following form: if h, f, g : R — R satisfy Prékopa condition and is almost satisfied

in the sense that

(2.19) /]R h(a)dr < (1 +2) ( 3 f(x)dx)s < /R d g(:n)d:n)l_s.

for some € > 0, there exists a log-concave function h:R* — R, and parameters a > 0, zg € R?
such that the following proximity estimates hold:

/ /(@) = a™h(z — szo)|dz < C(r)e ) / f(z)dz,
R4

R4

(2.20) /R gtw) - a' " h(z + (1 — s)ao)|dz < C(r)e* (") /R L 9()da,

/ \h(z) — h(z)|dz < C(r)e ) / h(z)dz,
R4 R4
where

7 min(s,1 —s), a et S/
Jrag
C(7) is a constant that depends on 7, and ay,(7) > 0 is a computable exponent that typically
depends on both the dimension n and the parameter 7.
Obtaining sharper versions of this inequality is currently a very active area of research. On
one side, the sharp exponent « is expected to be 1/2, as is the case, for instance, for the isoperi-
metric and Brunn-Minkowski inequalities [FMP10]. Indeed, this exponent has been obtained
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in [FvHT25|, but at the cost of a sub-obtimal constant C(7) that does not behave properly as
7 — 0. On the other hand, in [FR24], a quantitative stability version has been shown with
o =1/2 and C o< 7/2 in the 1D or radial in R, when the involved functions are log-concave.

In the present work, we will only need a stability version of Prékopa-Leindler for the case
7 = 1/2. Therefore, the 7—dependence of the constant C(7) is not particularly important for
us, and we may hence use some of the results from |[FvHT25| directly, which we collect in the
following Lemma.

Lemma 2.7. Let f, g, h: R — R be measurable functions satisfying Prékopa’s condition ([2.17)
with s = 1/2. If there is € > 0 such that ([2.19) holds, there exists xo € R? and a dimensional
constant Cy such that

/ f(@) gz +mo) dz < Cye'/?.
Re | Jga f Jra g
Proof. Recall a ! oo from [FvHT25|, estimates (2.20)) hold with & = 1/2 and a constant

fRd g ’
C(1) = C(1/2) = Cy, that depends only on the dimension. So there is a log-concave function h
such that

f(x) h(z — 30)
/]Rd [ — (fRdffRz 9)1/2 dz < Cyet/?,
g(x) ﬁ($+%x0) de < Crel/?
ol (e o)1 205

A change of variables on the inequality concerning ¢ and an easy triangular inequelity give the
desired bound. O

3. SHARP QUANTITATIVE STABILITY FOR BRASCAMP-LIEB INEQUALITY

In this section we are focused on the quantitative stability of the Brascamp-Lieb inequality,
as stated in Theorem Due to its importance to derive quantity stability results, and for the
reader’s convenience, we recall how this can be obtained with the carré du champ method, which
is based on the geometry of the following operator

def.

Lu =" Au— V¢ -Vu.

This method is based on the so called I'-calculus, which revolves around the following commutator
operators

T(f.9) = = (L(fg) — fLg — gLf) = (Vf,Vg),
def. 1 2 2 2
Ta(f,9) = 5 (LT(f,9) = T(f,Lg) = T(9,Lf)) = D*f: D*g + (D*eV f,Vg).
It is then a straight-forward computation to check the integration by parts formula
(3.) [ rrode. = [ (r.9)de, =~ [ fiodo, =~ [ gLido,.
R Rd Rd Rd

Lemma 3.1. Inequality (1.1) holds, and we have equality if, and only if, there exists a € R?
such that

N =

f(x) =a-Vo(r) +E,,f.
Proof. Given f € €>°(R?), set f = f — E,, f and let u be the unique weak solution of
Lu=f.
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From the classical regularity theory of uniformly elliptic equations, u € €°°(R?). So we can use
the I' calculus tools to write the variance of f as

Var,, (f) :/ Fd@w :/ fLudggo = _/Rd (Vf,Vu)do,

/ TV E(D%) V) do,

(. 1/2w)rdw) P el ae)

1/2 1/2
(/ D2 Vf, Vf> dg¢> </ <D290Vu, Vu> dg<p> .
Rd
Now we notice that

1
/ Iy (u)do, = / L\Vu|2dgw — / (Vu, VLu) do, = —/ (Vu, VLu) do,
R4 2 R4 R4 R4

since the integrand of the first integral is a divergence. In addition, by definition of I's we have
that

IN

/ (D%pVu, Vu) do, = / T2(u)do, — / | D?ulf} dey
R4 R4 R4
= —/ (Vu, VLu) d@(p—/ | Dl deg
R4 Rd
2
= Var, () [ (107 des.

Plugging it back into the original estimations of Var,,(f), we notice that

Vary, (f) < ( (@0 vrvr) dQs&) " (Var@¢<f> - [ o dw)

which gives inequality ([1.1)). This proof is also enlightening on the equality cases; indeed notice
that the chain of inequalities are all equalities, except for the application of a Cauchy-Scharwz

1/2

and the non-positive term on — HD2UH2
As a result, we have equality if, and only if,

—-1/2

D*u =0 and (D) "’V || (D%0)"*Vu.

The first condition implies that u = a-x +b for constant a € R? and b € R. Since u is a classical
solution of the equation Lu = f, it follows that, to have equality f must satisfy

f =a- VSO('%') +EQcpf'
The result follows. O

With the knowledge of the equality case for (1.1)), we now aim at a quantitative stability
version of this inequality in terms of the L! distance to the optimal set (see Remark [2.6), as
highlighted in Theorem [I.I} We state that result below once more for the reader’s convenience.

Theorem 3.2. Let ¢ : R - RU {+00} be an essentially continuous and convex function, and
Jpa € ¥ < 400 so that the Gibbs mesuare o, is well defined as in (1.4).
Then, there exists a universal constant Cy depending only on the ambient dimension such that

dlStLl (f, OBL) < Cd(sBL(f) 12

for all locally Lipschitz functions f € L2(g¢).
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Our proof of Theorem will be based, as mentioned in the introduction, on the linealization
argument from Bobkov-Ledoux |[BL00|, while employing the main results from |[FvHT25| in order
to control the deficit, and carefully using the geometry induced by the potential in order to control
the several stability parameters involved.

Proof. We first prove the result of the case that ¢ is strongly convex and essentially continuous
function. That is, we assume that there exists a > 0 such that D?¢ > aid, where the gradients
and hessians V¢, D?¢ are understood in the sense of Alexandrov (see for instance [EG15, Chapter
6]). Therefore £ and g, are a.e. well defined.

Given f € L%*(o,), it can be arbitrarily approximated in L?(o,) by a sequence of smooth
functions, so for the moment we assume f € €>°(R?). As a result, from the a-strong convexity
of ¢ there exists dg > 0 such that for all § < §y the function 2§ f — ¢ is concave.

Our goal is to apply the quantitative stability version of the Prékopa-Leindler inequality with
convexity parameter s = 1/2. In order to do so, we consider the functions

def. _ def. _ def. _
us = e20f Yoy = e, ws = els 4

where fs(z) is pointwise defined as

1

fit2) = sup 57(0) = | 5e(a) + )~ (T52 )

1 1
= hs;é)d 0f(z+h) — [ng(z +h)+ igo(z —h)— go(z)} .

It is not too hard to check that the triple of functions wug, vs, ws satisfies the condition in
Prékopa—Leindler’s inequality. Hence, as the total mass of vs is 1 by assumption, the standard
Prékopa-Leindler inequality holds and we can define the non-negative quantity 5 such that

1/2 de — dz) /2
(3.2) / wsdz = (1 + &5) (/ u(;d:z> e M Jra wsde = (Jpa 11‘/52 z) .
Rd Rd (fRd U(SdIE)

Analogously as in Bobkov-Ledoux |[BL00|, our argument to obtain the sharp quantity version of
the Brascamp-Lieb inequality will consist of studying the dependence on ¢ of the above quantities.
Starting with the integral of us, we get the following Taylor expansion on §:

(3.3) / usgdr =1+ 25/ fdo, + 2(52/ f*do, + o(6%).
R R4 R

For the expansion on the integral of wg, recall the classical result from log-concave measures
that

if / e~ % < 400, then ¢ is coercive.
R4

Therefore, the quantity being maximized in the definition of f5 is strongly concave and goes to
—o00 as h — +o00. Hence for g,-a.e. z let hs = hs(z) be optimal for the supremum in f5(2).
The optimality conditions for hs give, for g -a.e. point where the gradients and hessian of ¢ are
uniquely defined, that

5Vﬂz+m%:%W¢@+hﬁ—Vﬂz—MH:[ﬂwdm+w®)

-1

Since D%p > aid, the hessian is invertible and (D?p)” < a~'id, and developing the Taylor

expansion for V f in the identity above we obtain that
hs = 8(D%p) 'V f(2) + o(6).
In particular hs = O(0), uniformly in z. As a result, we can expand the value of f5(z) as

2
Fs(2) = 5 (2) + 5 {(D%0) VL F) +o(d?).
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Therefore, with a similar argument to the expansion of the integral of ugs, we get

/wgdx:/ ef‘*dg@
Rd Rd

_ 1+5/Rd fdg¢+622/w f2dg¢+522/Rd<(D230)_1Vf,Vf>dg¢+o(52).

1/2

In addition, using the Taylor expansion (1+s)/“ =1+ %s — %82 + 0(6%) and the expansion

for the integral of us we obtain that

1/2 52 2
( / u(;dac> =146 / fdo, + 62 / oy, — — ( / fdg(,p) + o(6%).
R4 R4 Rd 2 R4

Joining these estimates, we obtain the following expansion for €5:

i e

oL (@0 V595 do, ~ary (1) + 43

2 o 2
=(1 +O(6))% {5BL(f) + (562 )}

= (1+0(9))

From the quantitative stability of the Prékopa-Leindler inequality we obtain that there exists

a universal constant Cy, depending only on the dimension and on the convexity parameter which
is fixed s = 1/2, and some vector 25 € R? such that
Us()  —p(atas)

(3.4) /R AT

Taking into account the scaling of €5, which behaves as §2, we see that the RHS of the above
inequality is of the order §. Developing the LHS depends strongly on the behavior of x5 when
0 — 0. Clearly it must hold that z5 — 0 as § — 0, as a result we obtain that

’U,g(.%') _ e—np(a:-&-mé)

1
/ dz — < / u5> / 20F _ o~ (olates)—o(@)) / s
R4 fRd %) Rd R4 R4

:(1+0(5))/ [1+20f +0(8) = (1 + V() - 25 + o(ws)) (1 + 26, f + 0(5))| dey

da < Cyey/?.

do,

=(140(9))2 / )f V(x) - ;65 do, + 0(0 + x5).

Therefore, in order to obtain a meaningful estimate in terms of distz1(, )(f, Opr), we must
show that x5/26 has a cluster point as § — 0". For this, define the sets

n {z € dome: D2p(x ) < nid} .

From the convexity of ¢, for every n € N we can choose 0 sufficiently small so that p(z + xs) —
¢(x) = O(xs). More precisely, there is d,, such that for 6 < ¢,, we have

lvs = vs(- + 26) | L1(ray = [lvs — vs(- + 25)ll 1 ()

_ /Q 25 - V(@) + = (D%p(x)s, 25) + o(23)| doy
1

1
2
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Using a suitable triangle inequality, we get for § < §,

1
5 | lws - Ve(z)ldey < [lvs — vs(- + 26) | 11 (e
2 Jo, (
< |lvs = usll g gay + llus = vs(- + 25) || 12 (gay < €9,

where the bound [[vs — us|[ 1 (ray = O(6) follows directly from the definition of us as a pertur-
bation of vs and [jus — vs(- + s)|| 1(gay = O(0) is a consequence of the previous estimations on
the deficit of the Prékopa-Leindler inequality. But then we conclude that the quantity

)
| [ ve@]ae,

must remain uniformly bounded for § < d,. Now, we wish to exploit the fact that, since ¢

is essentially continuous, its moment measure p, has full-dimensional support, as highlighted

in Lemma Since s/ ||zs|| € S, we can find a subsequence of §, = 0 such that
— 00

x5, / ||lxs, | = 0, for some § € S%'. But then using Lebesgue’s dominated convergence
— 00
theorem and the fact that 1, converges strongly in Ll(g¢) to 1, we get that

C> limsup/

To,
20,

Zs,

s,

do, = limsup s, | V(x)| doy

n—o00 2571 Qn

V(z)

n—oo

5 : s, ||
= (/Rd !9-y!ducp(y)> 111111501? 2%,

Since the moment measure p, has full-dimensional support, x5, /d, remains bounded as n — oo.

Therefore, we can extract a subsequence &, k—> 0 such that % ﬁ a, for some vector
—00 " k—oo

a € RY. Coming back to the estimate on g5 from ([3.4)), dividing both sides by & and passing to
the limit of these estimates as §,, — 0 we obtain that

disty1(,,)(f, OpL) < /R , |(f = Ve(a) - a —E,, f)|de,

< li]gr_l)g}f(l + O(6n)) /]Rd ‘ <f — V() - % — Eg¢f> ‘ do, + 0(0p)

o\ 1/2
< limsup Cy <5BL(f) + 0(52”)>
k—o0 5"
= CudpL(f)"?,

and the result follows when ¢ is a-strongly convex and f € L?(0,) N °(R?). By approximation,
it follows also for all f € L%(g,).

For an arbitrary ¢ convex and essentially continuous, we finish the proof with an approximation
argument. In order to make it clearer, we modify the notation used previously in order for it to
emphasize the dependence on the potential . Hence, we shall write

BL(f;¢) and distpi(,,) (f, OBL,p),
in order to denote the deficit of the Brascamp-Lieb inequality and the distance to optimal func-
tions with respect to the potential ¢, respectively. Our strategy is to add a little quadratic

regularization by defining ¢, ot o+ 5| |2. The result will follow if we prove that the deficit if
upper semi-continuous

(3.5) lim sup 0, (f; va) < IBL(S; ¥),

a—0t

and that the distance to optimal functions is lower semi-continuous

(3.6) diStLl(gw) (f, OBL,@) < hrgérif diStL1(g¢) (f, OBL,goa)'
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For the first identity (3.5, first notice that the Gibbs measures g, converge pointwise, even
uniformly, to o, as @ — 0. Then, for any f € LZ(Q@L convergence of the variance follows from
Lebesgue’s dominated convergence theorem:

Vary,,, () —— Varg, (£).
For the positive term in the deficit, notice that D?p, = D?p + aid > D?p, hence D?¢,, is
invertible and it follows that (D2g0a)71

definite matrices, even if D%¢ becomes singular. As a result, assuming that dpr,(f;¢) < +00, we
have for all @ > 0 and f € L*(p,) that

/IR ((D%00) V1.V ) doy, < /R {(D%)7'V£Vf) de.,

and passing to the limit as o — 07 yields (3.5).
Moving on the sencond identity (3.6)), notice that the finite dimensional function

< (D%p)fl in the partial ordering of positive semi-

(@,0) = [If = (a-Vea +0)[ 114,

is convex, due to the triangle inequality, and coercive. So the infimum is attained at some (aq, by)

and, in particular, we know that it must be the case that b, = E,,_f — Eo, f “p In
a—0

addition, the optimal a, must be all contained in the same compact ball since (g, ) >0 have
equibounded moments. So we can assume w.l.o.g. that a, — a. It then follows from Fatou’s
o—

Lemma that

diStLl(g(p)(f, OBL,@) < Hf — (d -V + B)HLl(g(p) < lim inf diStLl(gp)(f? OBL,goa>-

a—0t

The result follows. ]

4. QUANTITATIVE STABILITY OF MOMENT MEASURES

In this section we use the previous machinery to obtain sharp quantitative stability results for
moment measures. We start by proving Theorem As usual, we shall state it again below for
the reader’s convenience:

Theorem 4.1. Given a Radon measure i € P1(RY) whose barycenter lies that the origin and
dimsupp p = d, let ¢ be a mazimizer of #,,. Then for any convex function ¢ : R? — RU {400}
it holds that

(4.1) dist 1 (ga) (0%, M) < Cal_Zu(@) — L)'/

In addition, there exists X\ € (0,1/2) such that, setting v ot @ — @ and py ot @+ Av, it holds

that

(4.2) dist1(uy) (9. M) < Ca ( (@) = Fu(o))?,
where pix = ppx ts the moment measure associated with the interpolation (a)*.

Proof. To prove the first estimate (4.1f), we let ¢ be a maximizer of _#,, while ¢ is a general
convex function. We then employ the quantitative version of the Prékopa-Leindler inequality
with the functions

f=e¥, g=e¢¥ and h= e ?1/2 with Pi/2 = #
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Therefore f, g, h satisfy the Prékopa condition with convexity parameter s = 1/2. In addition,
due to concavity of ¢, and the optimality of ¢ we have that

0<s Hule12) — % (Zu(@) + Zu(0))
< Sul@) = 5 (Sul@ + Iue) = 5 (Fu@) = Fulo) 2 e

The quantity ¢ can be precisely related to the deficit of the Prékopa-Leindler inequality. Indeed:

i B . 1/2
6 =log </ ew1/2dx> — log </ e ¥ dw- / e ? dm)
Rd Rd R4

- [ (o1 3o+ o)dn
Rd

=0

/e@;ﬂdx
]Rd
1/2
</ e“o*dgc‘/ e‘P*dx>
Rd R

Now, notice that since pz+ and all elements in M, are probability measures, their distance
in LY(R?) is at most 2. As a result, we can assume that _#,(p) — #.(p) < 1 otherwise the
inequality is trivial. From the previous estimates we have that

. » ) 1/2
/ e “12dr < (1+¢) </ e ¥ dx / e ¥ dx) .
Rd Rd Rd

Then, the quantitative version of Prékopa-Leindler inequality in the form of Lemma [2.7) implies
that there exists a universal constant Cy depending only on the dimension and zy € R? such
that

=log

/Rd |0+ (2) = 0 (2 + 20)| dz < Cal Fu(@) — Ful9)'/2.

Estimate (4.1)) follows.
For the second estimate recall the interpolation ¢y = @ + tv, so that ¢g = @, and define the

one-dimensional function
def.

b J(t) = Fuler).

Hence a second order Taylor expansion and the characterization of the second variation of _Z,
from Lemma 2.5 we obtain that

1
Ful9) = Aue) = T = J0) = 70+ [ (1= 07" 0y
- 1 d2
= (T A@ | =05z Ao

0
1
_ _/0 (1 — )dpL, (1Y), 07 dt,

where we have used the fact that if ¢ € argmax ¢, then the moment measure p,- coincides
with p so that the first variation vanishes. In the sequel, using the quantitative stability version
of the Brascamp-Lieb inequality provided by Theorem there exists a dimensional constant
Cy such that

1
[a=n it o= —(aat bl ) dt < CAWE) ~ Fuo).
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In particular, there must exist some A € (0,1/2) such that the integrand above evaluated at the
interpolation fi,x yields

: N (o 2 N\ 1/2
aeﬂg}geRH(so P) = (a2 +0)l[Lru,,) = 2Ca (Fu(@) = Ful0) ™

This finishes our proof. U

4.1. Stability in a compact domain. The simplest case of stability is when both o and pu
are restricted to be supported on a convex and compact domain £, that is o, € Z(Q2). The
attentive reader might have hesitated if this is even possible without contradicting the uniqueness
result of Cordero-Eurasquin and Klartag for moment measure representations. Here the question
is to find ¢ € () such that

(4.3) p=(Vy),e v 2L Q.

The existence question follows with simplified versions of the arguments from |[CEK15,[San16| by
considering the functionals

&.alo) = /Q log odo + T(0,11),  Fua(p) = log /Q e ¥ dz — /Q dp.

Uniqueness then follows, now without modulo translations, due to the strict geodesic convexity
of the entropy since €2 is convex.

One could embed g in Z() for any ' containing its support and obtain another moment
measure representation. What is happening here? For any representation in a bounded domain
the potential g is necessarily Lipschitz continuous, for instance due to Viq being the Brenier
map with the compactly supported target u, and hence bounded in ). Therefore, if one wishes
to use ¥q for a moment measure representation in R% we must extend it with +o0o outside of 2 so
that e~%% remains a probability measure. But this means that this extention is not continuous
in all of 02, and hence it is not essentially continuous. Therefore have no contradiction with the
results of [CEK15|, since their result states uniqueness up to translations of a moment measure
representation with an essentially continuous potential.

From one hand, this case is much less interesting from a strictly mathematical point of view,
since the compactness of the domain makes many arguments easier. However, it is particularly
relevant for numerical applications where one often restricts the problem to a bounded domain.
Furthermore, in this case we obtain stronger stability results as a direct corollary of Theorem [4.1]

Theorem 4.2. Let Q be a convexr and compact subset of RY.  Given two Radon measures
p,v € P(Q) whose barycenters lie at the origin and dimsupp p = dimsuppv = d, let ¢, p, be
mazimizers of Zu.q, Zvq respectively. Then, there exists a universal constant Cyq depending
only on the dimension and on the diameter of € such that

(4.4) Jnf o () = 0gr (- + x0)| | sy < CanWa(s )2
and
(4.5) At e = 00) = (@ 2+ D)) < CaaWa(w ),

where py =y, is the moment measure of ¥y = ((1 — X, + Apy)* for some X € (0,1).
Proof. Consider p,v € Z(2), and consider two convex functions ¢, ¢, such that

Y, € argmax ¢, ¢, € argmax _Z,.

Since ¢, ¢, are optimal Kantorovitch potentials for the L?-optimal transportation problem in
a compact domain, they are both Lipschitz with constant diam 2. Then by optimality of ¢,,, for
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the maximization of _#,, and concavity of ¢, we have that

0< Zulen) — Fulen) <V Zulev), o — v) =V — s o — pu)
< Lip(¢u — o0 )Wi(p, v),

which can then be easily combined with Lemma to obtain bounds on the distance between
the sets argmin &),, argmin &,,, and between argmax ¢, argmax _Z,. O

Remark 4.3. A similar argument can be employed to estimate the distance between the sets
argmin &), o, argmin &, , in the L'(R%) topology. Indeed, for all & > 0 the functional Fua
remains concave, with an application of the classical Prékopa-Leindler inequality. Hence taking
Ou,ar Pr,a such that

Pua € argmax o, Pua € argmax g, q,
these are also Lipschitz continuous, and we have the same bound

0< /,u,a(gp,u,a) - /y,a(@u,a) < <V/u,a(80u,a)7 Pu — <Pl/> = <V — M Pu,a — @V,a)
< diam QW1 (i, v).

Which can also be used as in Lemma to bound the distance argmin &), o, argmin &, o, but
not of argmax _Z, o,argmax _Z, , since for o > 0 the argument via quantitative estability of
Brascamp-Lieb does not apply.

4.2. Convergence rates w.r.t. regularization parameter. We are also able to prove results
on the sharp rates of convergence of regularized moment measures introduced in [DF25| to the
classical ones from |[CEK15|.

Recall that for each o > 0, the regularization present in the energies &), , and ¢, o induces
a unique minimizer /maximizer pair (94, @q) associated with the moment regularized measure
representation of u. Therefore, it makes sense to study the convergence of these pairs as o — 0
by estimating the distance of g, to M,, and of ¢, to N,.

Theorem 4.4. Fiz a Radon measure u € P1(RY) whose barycenter lies at the origin and such
that dimsupp p = d. Then there exists a constant Cq,, depending on the ambient dimension and
on p such that

(4.6) dist 11 (gay (0o My) < Capa/?,

where the Gibbs probability measures g, e_(“"ZY“L%‘le), give the reqularized moment measure
representation for .

In addition, let (pa),~q be the family of uniquer mazimizers of (_Zu.a) 40
there exists A € (0,1/2) such that, setting v = © — o and g = © + Av, it holds that
(4.7) distz1(,1y) (Par Ny) < Capa’?,

where pix = fips 18 the moment measure associated with the interpolation (py)*.

Then, for each a,

Example 4.5. Set S)(z) = Az, and consider the scallings
fix = (Sa)yu, and gy = €™ with (@x),00 = 1.
Then one can check that ¢y (-) = A (\-), where ¢ is the moment map. As a result we have that

Ma(pa) = NMa(p),  Ma(0r) = A2 Mz(0),
so it is perfectly possible that M (o) explodes while Ma (1) remains bounded.

For the purposes of Theorem the only important fact is that Ms(o,) is finite, which is
always the case for log-concave measures, but in the next section we identify conditions on u
which ensure that Ms(o,) can be controlled uniformly.

As we will see in the proof below, the constant Cy, = C4Ma(0), where o = p,, the Gibbs
measure associated with the moment measure representation of u. Therefore, the constant
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depends on p only via the second moment of g,, which is finite since g, is log-concave, but
cannot be controlled in general only by bounding the second moment of p as the following
example shows.

Proof of Theorem[{.4 The goal is to compare the ¢, energies of ¢4, the unique maximizer
of Zua for a > 0, and the maximizer ¢ of ¢, such that p = e %" is a centered probability
measure.

From Theorem we know that the unique minimizer of &), , can be obtained from ¢, as

_ * | 2
Qa X e (L‘Da+2|$| )’

and similarly for the case o = 0, we can map ¢ into a minimizer of &), defined as the Gibbs
probability measure
ooxe ¥,
To compare the ¢, energies, we start by recalling the regularized energy ¢, . and noticing
the following trivial bound

f#,a(‘/)a) == log/ 6—(<PZ+%|50|2)dx —/

Rd R

< log / ¢ P - / Padp = _7u(¢a)-
R4 R4

Padp
d

Therefore we have that

j#(gp) - /u(@a) < /u(‘:p) - fu,a(SOa) = gy,a(ga) - gu(@)
< Gpalo) = Eul0) = aMs(o) = Cpa,

where the first equality comes from the strong duality formula between the minimization of &,
and the maximization of ¢, , proved in Theorem Since ¢ is a log-concave measure, its
second moment is finite and hence a constant C,, depending only on .

Combining this estimate with Lemma the result follows. O

4.3. Stability over R?. The stability result in a compact setting proven in Section covers
most cases of applications, since for computational purposes one usually needs to truncate the
measures to a compact domain. Although the restriction of y to a compact domain is not
problematic due to many interesting cases already being in this setting, the Gibbs measure g,
is in general supported over the whole R?. Therefore, it is interesting to obtain stability results
also for moment measure representations over the whole R%.

As mentionned above, this was achieved for regularized moment measures in [DF25|, using
the strong geodesic convexity of the functional &), ,. The convergence results from Section
depending on M>(p,) give a hint on why the stability for regularized moment measures appears
to be a more direct issue, as in this case one can explect to control the second moment of the
Gibbs measure g, . independently of p, thanks to the regularization term. Without such a
uniform control, we cannot know if the constant multiplying any quantitative stability inequality
will remain bounded. Example above shows that we cannot in general bound Ms(g,) in
terms of M (p).

In this section, we identify two very natural classes of measures i, for which Ms(g,) remains
uniformly bounded. We can then leverage the stability proof via geodesic convexity from [DM23|
and the convergence rates in Theorem [£.4] to obtain quantitative stability results for moment
measure representations over R? in terms of the Wy-distance.

The first approach is to impose a lower bound on the quantity

4.8 e déf"f/ - 0lduly),
(4.8) (p) =, Inf Rd!y |dp(y)

that measures the minimal spread of the measure p in all directions, beging therefore very natural
for the study of moment measures. We shall also require that p is supported on a convex and
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compact set {2, so that we can control the Lipschitz constant of the potential ¢y,. Therefore, we
consider the class of measures defined as

def. _ j is centered,
(4.9) Ky = {,u e Z(Q): Q) > ¥ }

The fact that 4 € &2() implies that the potential ¢y, is Lipschitz continuous with constant
L = diam(Q2). This is not sufficient to control M>(g,), but enforcing the lower bound on © ()
we have

(4.10) o) =, inf /R Vo) fle= %@ dx > 0.

Combining this with the Lipschitz continuity of ¢},, we can employ the following growth estimate
for convex functions due to Klartag [Klal4].

Lemma 4.6. [Kla1/, Lemma 2] Suppose that v : R® — R is a L-Lipschitz, convex function such
that o0 o< =¥ has barycenter at the origin. If there exists ¢ > 0 such that

inf v Ble V@ dg > ¢,
Jnt [ Vo) ol e =

then there exists £, 81, Ba depending only on d, L, ¢ such that
lx| - p1 < (x) < Llz|+ B2, for all z € RY.
In particular, the second moment of ¢ is bounded by a constant depending only on d, L, c.
We can now state our quantitative stability result for measures in Ky.

Theorem 4.7. Given Q a convex and compact subset of R® and ¥ > 0, then for every p > 2
there exists a constant C' such thats for all p,v € Ky

(4.11) distyr, (M, M) < CWa(p, v) o1,
where C depends only on the d, diam Q, ¢, and grows linearly in p.

Proof of Theorem[.7. The proof consists of combining the convergence rates of regularized mo-
ment measures from Theorem with strong geodesic convexity argument from [DM23| and
the uniform bounds on the second moment that we obtain for g, whenever p € Ky through
Lemma 4.6

First, notice that for all u € Ky and o > 0, letting g, o denote the Gibbs measure associated
with the (regularized if o > 0) moment measure representation of x, we have that Ms(0,.a) <
Cq,9,4, where the constant depends only on 2, c and d. This is a direct consequence of Lemma
since the potentials 7, , are all diam(§2)-Lipschitz continuous.

For the reader’s convenience, we detail the part of [DF25|’s strong geodesic convexity argument
that is relevant to us. Given u,v € Ky and some o > 0, let (Qavt)te[o,l} be the constant speed
geodesic with endpoints

Oa,0 = OQu,ary  OQa,1 = Ov,a-

Since both &), o and &, are a-strongly geodesically convex functionals over P5(R?), we have
that

1 1 o
éa,u,a(@u,a) < gp,a(@a,lﬂ) < ig,u,a(g,u,a) + 5&%(1(@1@&) - §W22(Q;L,on QV,Oc)v

and similarly for &, ,. Rearranging we get
e}
ZWg(Qu,aa Ql/,a) < gp,a(@u,a) - g,u,a(@,u,a%

«
ng(gu,cw Qu,a) < gy,a(@u,a) - @ﬁu,cx(gu,a)-
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Adding these inequalities, and recalling that T (uo, 1) = —W3 (o, 1) + Ma(po) + Ma(p1)
and W3 (po, 1) < 2Ma(po) + 2Ma(p1), we obtain

T3 Qs 0via) < Tlenas 1) = Tlewarv) + Tlepasv) = T(euar 1)

=Wa(ev,a, 1) + Walova, v)) Walovas 1) — Walov,a: V)
+ (Wa(ouas V) + Walpar 1)) (Walopar v) — Walopas 1))
<(Wa(ev,a, 1) + Walov,a,v) + Wa(0pa,v) + Walop,a 1)) Wa(p, v)
<Coaw,aWa(p,v),
where we have used that for any p,v € Ky, all second moments above are uniformly bounded

by a constant depending only on 2, % and d. In particular, this gives an explicit behaviour on «
for the bound proven in |[DF25, Theorem 3.1| for the particular case of u,v € Ky, i.e.

(4.12) Wa(0pas Ova) < @~ V2Co9 Wa(p, )2,

To finish the proof we need to exploit the explicit rates of convergence of regularized moment
measures from Theorem . The issue is that these convergence rates concern the L! distance
between ¢, . and M,. But for absolutely continuous measures with bounded p-moments, the
L' norm can be used to control Wasserstein distances. There exists a constant C}, , such that

(4.13) Wq(20, 01) < Cpg(Mp(e0) + My(21))'/” oo — 1|47,

see Lemma [2.1] in Section 2

As a result, combining , with the stability of regularized moment measures from ,
and the explicit rates of convegence from 4.4] we let o, = o,(- + z4) € M, be a Gibbs measure
associated with the moment measure representation of p such that

”Q;ua - QMHLl(Rd) < QdiStLl(Qu,a’Mu)v < CQ,d,ﬁa1/2a
and similarly for g,. Then, for every o > 0, we have
disty, (M, My) < Walou, 0v) < Walop, 0pa) + Walopas 0v.a) + Walova, ov)
<C (a1/4—1/2p n Oé_l/QWQ([L,V)l/2) ’

where the constant C above depends on 2,4, d, p, more specifically it depends on Mp(gu)l/ P,
which behaves linearly in p, so that the constant explodes as p — oc.
But for every finite p > 2, we can optimize the above estimate in « to obtain the best possible
bound, which is achieved for
2
a=W (U: v )sz7
which gives

—2
distiv, (M M) < CWa(p,v) o1,
for all p > 2, with a constant C' depending on 2,4, d, p. O

Proposition 4.8. Inequality (4.11)) never holds with a constant independent of 9.

Proof. Suppose that there was a constant C', independent of ¥, such that holds for all
moment measures p,v. Then consider the one-dimensional measure over the segment L =
[0,1]e; € RY

pw=s1L,
and a sequence of normalized mollifications (y )., so that Wa(u, pe) — 0.

If a inequality such as held with a constant independent of ¥, then we would have that
0. = e %= would be Cauchy in W5 as ¢ — 0, and hence would converge to some limit measure o.
Since all 9. as L-Lipschitz, we can extract a locally uniformly converging subsequence, so that
Y. — 1 locally uniformly, and hence o = e .
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In addition, . et (id, V@ba)ﬁga is the optimal transport plan between p. and ., and since
Wo(pe, ) — 0 we have that v, converges weakly to some limit plan . By stability of optimal
transport plans, 7 is an optimal transport plan between p and p and must be given by (id, Vw)ﬁg.
But then v is L-Lipschitz and a moment measure representation for u, which is impossible since
1 is supported on a hyperplane. O

Remark 4.9. The exponent &%24 in Theorem can be made arbitrarily close to 1/6 by taking
p large enough, at the cost of getting a worse constant C', which behaves linearly at p. It is
somewhat natural to expect a worse exponent that 1/2 obtained in [DF25| for regularized moment
measures, since the regularization term improves the second moment of solutions. However, it is
not clear whether the limiting exponent 1/6 is optimal or not.

The second class of measures for which we can derive quantitative stability results is obtained
by bounding the curvature they induce. Given A > 0 we define

def.

(4.14) Ka = {u € Zoe(RY) : ppox eV, where D*V < Aid} .

In , the condition D?V < Aid is understood only on domV and we do not make any
convexity assumption. In this case that p has bounded curvature, we can expect that the Gibbs
measure g, has a stronger geometry than the log-concavity of the orginal measure. Indeed we
shall show that the optimal potential o}, that yields the moment measure representation of y is
A3 strongly convex.

This improved strong-convexity result will be obtained by bootstraping the suplementary regu-
larity enjoyed by the regularized moment measure representation in conjunction with Caffarelli’s
contraction thereom, a global Lipschitz regularity result for the optimal transport between log-
concave measures. See for instance the original works of Caffarelli [Caf92,|Caf00], or |GS25]
for a modern approach via entropic regularization and the references therein. For the reader’s
convenience, we recall that it is stated as follows:

Theorem 4.10 (|Caf92/|Caf00]Caffarelli’s contraction theorem). Let p, v € Py (R?) be such that
dom 1 = R?, dom v is conver, and satisfying

(4.15) poxe vV, voe WV, where D*V < Aid and D*W > \id,
where A, X\ > 0. Then the L*-optimal transport map Ty = v is Lipschitz continuous with constant
VA

With this result we prove the following regularity result for moment measures associated with
elements of K.

Theorem 4.11. For any p € Ka, let o, be a potential inducing the moment measure represen-

1/3

tation p = (V@Z)ﬂef‘ﬁ*‘. Then ¢y, is A™"/°-conver.

Proof. Fix some « > 0 and consider the regularized moment measure representation of u as
_ * o 2
p=(Veh),e” @t = (V2 00,

so that o, o< e~V where D?V,, > «id. In addition, from Brenier’s Theorem V. is the L?
optimal transportation map from u to g4.
From Caffarelli’s contraction theorem we have that

[ A
«

which in turns implies further regularity for the Legendre transform ¢, being therefore y/a/A-
strongly convex. This implies a better bound for strong convexity of V, and can be exploited
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once again in Caffarelli’s contraction theorem, implying that
A A1/4
Va/A Cal/t”

This argument can be bootstrapped indefinably, and one can check by induction that at the
k-th time it yields

Lip(Vga) <

Sk al/?*
and @} is Tfstrongly convex,

AS

with S, = Zle (_12):“. Passing to the limit as £ — oo, we obtain that for all & > 0

Lip(VgOa) < W

Lip(Va) < A3 and ¢ is A~'/3—strongly convex.

In particular, this implies that V¢, converges locally uniformly to Vi, a maximizer of _Z,,,
so that ¢ is also AY/3-Lipschitz, so that the optimal potential ¢* is A3 —strongly convex, as

we wanted to prove. O

Besides the relevance to obtaining another quantitative stability result for moment measures
in the class Iy, see Theorem below, this result is particularly interesting for applications
in sampling. Whenever p o< e~V is log-concave there are efficient sampling algorithms based on
the Lagevin dynamics associated with the potential V' [Che23, | CNWR25,DCWY19|. In the case
that V is strongly convex, its associate Gibbs measure statisfies a log-Sobolev inequality as we’ve
learned from the Bakry-Emery technique [BGL13] and as a result implies exponential covergence
rates for the associated Langevin dynamics [MV00]. This can then be exploited in sampling
algorithms, see [CKSV]| for a recent application or the recent monographs |[Che23, CNWR25|.
With only the upper bound D?V < Aid, the rate of convergence of the Langenvin dynamics,
and hence of sampling algorithms, can be only polynomial if any convergence guarantee is even
available. However, if the moment measure representation for p has been computed, we know
from Theorem that its potential ¢y, is strongly convex, so we can use a Langevin-based
sampling algorithm with exponential convergence rates to obtain a sample of the (strongly)
log-concave measure g, and map this sample into a sample of u directly.

In Lemmawe have exploited the lower bound on O(u) aligned with the Lipschitz continuity
of the moment map induced by p to bound the moments M,(o,). This can even more easily
be achieved for u € Kp by exploiting the strong convexity result from Theorem [f.11] and the
following bound on the p-moments.

Lemma 4.12. Let ¢ be a centered, \-strongly convex function. Then for every p > 2 the p-
moment of its associated Gibbs measure can be bounded as

SN g )
My(e™)"" = </Rd |z|Pe dx) < Cp,

where C' is a constant depending only on \ and the dimension d.

Proof. Since the A-strongly convex function ) is centered, it is a known fact in convex analysis
that:

(4.16) ¥(0) < d+infv =d+P(xy)

where * denotes its minimizer. This is proven for instance in [Fra97|. As a result of the A-strong
convexity of 9, and the fact that Vi (x,) = 0 that

(4.17) (Vp(x), @ — x4) > N — x|
On the other hand, the divergence theorem gives that

(4.18) /Rd div (|7 — 2P 2(x — 2.)) e Vdz = /

|z — 2. |P72(z — x,) - Vap(z)e Vda.
Rd
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Now define the following quantity
V(p) = / |z — . [Pe Y@ da,
Rd

Combining identities (4.17)), (4.17)), and developing the divergence, we obtain that

< d+p—2)
X

V(p) Vip—2).

Noticing that V' (0) = 1, by induction we obtain that for all £ € N
T L (5+k)

V(2k) < AR TT(d+ 2i) = xhok—22 2
(2k) H}( ) T ()

where I' corresponds to the gamma function.

Using Hélder’s inequality, in the form | f[[} < [If H;t_t)po Ilf HZ: ! for a convex combination
p = (1 —t)po + tp1, we can interpolate the above inequality for any p > 2, by choosing py = 2k

and p; = 2(k + 1) for a convenient k such that p € (2k,2(k + 1)). Due to Stirling’s formula, this

yields an estimate such that
1/p
(/ |z — x*\pe_¢($)d$> < Cp,
R4

for a constant C' depending on d and .
To conclude, we need only to bound |x,|, this can be done with (4.16|) and the strongl convexity.
Indeed, using once again that Vi(z,) = 0, we have

Mo —a.f? < 9(0) — ¥(a.) < d.

Hence, combing all these estimates we get that

1/p L/p d
Me ) < ([ o - ape@an) ot lnl < op 5,
Rd

and the result follows. O

Combining this and the reasoning of Theorem we can obtain a stability result for elements
of Cx with a completely analogous proof.

Theorem 4.13. Given A > 0, then for each p > 2 there exists a constant C such that, for all
w, v € KCp it holds thats

p—2
(4.19) distyy, (M, M,) < CWao(p,v)or=1,
where C' depends only on the d, A, and grows linearly in p.
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