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Abstract. In this work we analyze the Total Variation-Wasserstein min-
imization problem. We propose an alternative form of deriving optimality
conditions from the approach of [8], and as result obtain further regular-
ity for the quantities involved. In the sequel we propose an algorithm to
solve this problem alongside two numerical experiments.
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1 Introduction

The Wasserstein gradient flow of the total variation functional has been stud-
ied in a series of recent papers [2,4,8], for applications in image processing. In
the present paper, we revisit the work of Carlier & Poon [8] and derive Euler-
Lagrange equations for the problem: given Ω ⊂ R

d open, bounded and convex,
τ > 0 and an absolutely continuous probability measure ρ0 ∈ P(Ω)

inf
ρ∈P(Ω)

TV(ρ) +
1
2τ

W 2
2 (ρ0, ρ), (TV-W)

where τ is interpreted as a time discretization parameter for an implicit Euler
scheme, as we shall see below.

The total variation functional of a Radon measure ρ ∈ M(Ω) is defined as

TV(ρ) = sup
{∫

Ω

divzdρ : z ∈ C1
c

(
Ω;RN

)
, ‖z‖∞ ≤ 1

}
, (TV)

which is not to be mistaken in this paper with the total variation measure |μ|
of a Radon measure μ or its total variation norm |μ|(Ω). We call BV(Ω) the
subspace of functions u ∈ L1(Ω) whose weak derivative Du is a finite Radon
measure. It can also be characterized as the L1 functions such that TV(u) < ∞,
where TV(u) should be understood as in (TV) with the measure uLd Ω, and it
holds that TV(u) = |Du|(Ω). As BV(Rd) ↪−→ L

d
d−1 (Rd), solutions to (TV-W) are

also absolutely continuous w.r.t. the Lebesgue measure. Therefore, w.l.o.g. we
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can minimize on L
d

d−1 (Ω), which is a reflexive Banach space. In addition, a
function ρ will have finite energy only if ρ ∈ P(Ω).

The data term is given by the Wasserstein distance, defined through the value
of the optimal transportation problem (see [19])

W 2
2 (μ, ν) def.= min

γ∈Π(μ,ν)

∫
Ω×Ω

|x − y|2dγ = sup
ϕ,ψ∈Cb(Ω)

ϕ⊕ψ≤|x−y|2

∫
Ω

ϕdμ +
∫

Ω

ψdν, (1)

where the minimum is taken over all the probability measures on Ω × Ω whose
marginals are μ and ν. An optimal pair (ϕ,ψ) for the dual problem is referred
to as Kantorovitch potentials.

Using total variation as regularization was suggested in [18] with a L2 data
term for the Rudin-Osher-Fatemi problem

inf
u∈L2(Ω)

TV(u) +
1
2λ

‖u − g‖2L2(Ω) , (ROF)

see [6] for an overview. Other data terms were considered to better model the
oscillatory behavior of the noise [15,17]. More recently Wasserstein energies have
shown success in the imaging community [12], the model (TV-W) being used for
image denoising in [2,4].

Existence and uniqueness of solutions for (TV-W) follow from the direct
method in the calculus of variations, and the strict convexity of W 2

2 (ρ0, ·) when-
ever ρ0 is absolutely continuous, see [19, Prop. 7.19]. However, it is not easy
to compute the subdifferential of the sum, which makes the derivation of the
Euler-Lagrange equations not trivial.

In [8], the authors studied the gradient flow scheme defined by the successive
iterations of (TV-W), and following the seminal work [14] they showed that,
in dimension 1 as the parameter τ → 0, the discrete scheme converges to the
solution of a fourth order PDE. They used an entropic regularization approach,
followed by a Γ -convergence argument, to derive an Euler-Lagrange equation,
which states that there exists a Kantorovitch potential ψ1 coinciding with some
div z ∈ ∂ TV(ρ1) in the set {ρ1 > 0}. On {ρ1 = 0}, these quantities are related
through a bounded Lagrange multiplier β associated with the nonnegativity
constraint ρ1 ≥ 0.

In this work we propose an alternative way to derive the Euler-Lagrange
equations which relies on the well established properties of solutions of (ROF)
and shows further regularity of the quantities div z, β.

Theorem 1. For any ρ0 ∈ L1(Ω) ∩ P(Ω), let ρ1 be the unique minimizer
of (TV-W). The following hold.

1. There is a vector field z ∈ L∞(Ω;Rd) with div z ∈ L∞(Ω) and a bounded
Lagrange multiplier β ≥ 0 such that
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div z +
ψ1

τ
= β, a.e. in Ω

z · ν = 0, on ∂Ω
βρ1 = 0, a.e. in Ω

z · Dρ1 = |Dρ1|, ‖z‖∞ ≤ 1,

(TVW-EL)

where ψ1 is a Kantorovitch potential associated with ρ1.
2. The Lagrange multiplier β is the unique solution to (ROF) with λ = 1 and

g = ψ1/τ .
3. The functions div z, ψ1 and β are Lipschitz continuous.

2 The Euler-Lagrange Equation

Let X and X	 be duality-paired spaces and f : X → R ∪ {∞} be a convex
function, the subdifferential of f on X is given by

∂Xf(u) def.= {p ∈ X	 : f(v) ≥ f(u) + 〈p, v − u〉 , for all v ∈ X} . (2)

In order to derive optimality conditions for (TV-W) we will need some properties
of the subdifferential of TV and of (ROF).

Proposition 1. [3,6,16] If u ∈ BV(Ω) ∩ L2(Ω), then the subdifferential of TV
in L2(Ω) at u assumes the form

∂L2 TV(u) =
{

p ∈ L2(Ω) :
p = −div z, z ∈ H1

0 (div;Ω),
‖z‖∞ ≤ 1, |Du| = z · Du

}

If in addition u solves (ROF), then

1. u+ solves (ROF) with the constraint u ≥ 0;
2. it holds that

0 ∈ u − g

λ
+ ∂L2 TV(u), (3)

and conversely, if u satisfies (3), u minimizes (ROF);
3. for Ω convex, if g is uniformly continuous with modulus of continuity ω, then

u has the same modulus of continuity.

In the previous proposition, we recall that H1
0 (div;Ω) denotes the closure of

C∞
c (Ω;Rd) with respect to the norm ‖z‖2H1(div) = ‖z‖2L2(Ω) + ‖div z‖2L2(Ω).

Unless otherwise stated, we consider in the sequel X = L
d

d−1 (Ω), X	 = Ld(Ω)
and we drop the index X in the notation ∂X . Under certain regularity conditions,
one can see the Kantorovitch potentials as the first variation of the Wasserstein
distance, [19]. As a consequence, Fermat’s rule 0 ∈ ∂

(
W 2

2 (ρ0, ·) + TV(·)) (ρ1)
assumes the following form.

Lemma 1. Let ρ1 be the unique minimizer of (TV-W), then there exists a Kan-
torovitch potential ψ1 associated to ρ1 such that

− ψ1

τ
∈ ∂

(
TV + χP(Ω)

)
(ρ1). (4)
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Proof. For simplicity, we assume τ = 1. Take ρ ∈ BV(Ω) ∩ P(Ω) and define
ρt

def.= ρ + t(ρ1 − ρ). Since Ω is compact, the sup in (1) admits a maximizer [19,
Prop. 1.11]. Let ϕt, ψt denote a pair of Kantorovitch potentials between ρ0 and
ρt. From the optimality of ρ1 it follows

1

2
W 2

2 (ρ0, ρ1) + TV(ρ1) ≤
∫

Ω
ϕtdρ0 +

∫
Ω

ψtdρt +TV(ρt)

≤
∫

Ω
ϕtdρ0 +

∫
Ω

ψtdρ1 +TV(ρ1) + (1 − t)

(∫
Ω

ψtd(ρ − ρ1) + TV(ρ) − TV(ρ1)

)

≤ 1

2
W 2

2 (ρ0, ρ1) + TV(ρ1) + (1 − t)

(∫
Ω

ψtd(ρ − ρ1) + TV(ρ) − TV(ρ1)

)
.

Hence, −ψt ∈ ∂
(
TV + χP(Ω)

)
(ρ1) for all t ∈ (0, 1). Notice that as the optimal

transport map from ρ0 to ρt is given by Tt = id−∇ψt and assumes values in the
bounded set Ω, the family (ψt)t∈[0,1] is uniformly Lipschitz so that by Arzelà-
Ascoli’s Theorem ψt converges uniformly to ψ1 as t goes to 1 (see also [19,
Thm. 1.52]). Therefore, −ψ1 ∈ ∂

(
TV + χP(Ω)

)
(ρ1). �

With these results we can prove Theorem 1.

Proof (of Theorem 1). Here, to simplify, we still assume τ = 1. The subdifferen-
tial inclusion (4) is conceptually the Euler-Lagrange equation for (TV-W), how-
ever it can be difficult to verify the conditions for direct sum between subdiffer-
entials and give a full characterization. Therefore, for some arbitrary ρ ∈ M+(Ω)
and t > 0, set

ρt =
ρ1 + t(ρ − ρ1)

1 + tα
, where α =

∫
Ω

d(ρ − ρ1).

Now ρt is admissible for the subdifferential inequality and using the positive
homogeneity of TV we can write

TV(ρ1) −
∫

Ω

ψ1d (ρt − ρ1) ≤ TV(ρ1) + t (TV(ρ) − TV(ρ1))
1 + tα

.

After a few computations we arrive at TV(ρ) ≥ TV(ρ1) +
∫

Ω
(C − ψ1)d(ρ − ρ1),

where C = TV(ρ1) +
∫

Ω
ψ1dρ1. Notice that (φ + C,ψ − C) remains an optimal

potential. So we can replace ψ1 by ψ1 − C, and obtain that for all ρ ≥ 0 the
following holds

TV(ρ) ≥ TV(ρ1) +
∫

Ω

−ψ1d(ρ − ρ1), with TV(ρ1) =
∫

Ω

−ψ1dρ1. (5)

In particular, this means −ψ1 ∈ ∂
(
TV + χM+(Ω)

)
(ρ1) and ρ1 is optimal for

inf
ρ≥0

E(ρ) := TV(ρ) +
∫

Ω

ψ1(x)ρ(x)dx. (6)

This suggests a penalization with an L2 term e.g.

inf
u∈L2(Ω)

Et(u) := TV(u) +
∫

Ω

ψ1(x)u(x)dx +
1
2t

∫
Ω

|u − ρ1|2dx (7)
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which is a variation of (ROF) with g = ρ1 − tψ1. In order for (7) to make sense,
we need ρ1 ∈ L2(Ω), which is true if ρ0 is L∞ since then [8, Thm. 4.2] implies
ρ1 ∈ L∞. Suppose for now that ρ0 is a bounded function.

Let ut denote the solution of (7), from Prop. 1 if ut solves (7), then u+
t solves

the same problem with the additional constraint that u ≥ 0, see [5, Lemma A.1].
As ρ1 ≥ 0 we can compare the energies of u+

t and ρ1 and obtain the following
inequalities

E(ρ1) ≤ E(u+
t ) and Et(u+

t ) ≤ Et(ρ1).

Summing both inequalities yields
∫

Ω

|u+
t − ρ1|2dx ≤ 0, therefore u+

t = ρ1 a.e. on Ω. (8)

In particular, we also have that ut ≤ ρ1. But as ut solves a (ROF) problem, the
optimality conditions from Prop. 1 give

βt − ψ1 ∈ ∂L2 TV(ut), where βt
def.=

ρ1 − ut

t
≥ 0. (9)

Notice from the characterization of ∂L2 TV(·) that ∂L2 TV(u) ⊂ ∂L2 TV(u+).
Since u+

t = ρ1, we have that

βt − ψ1 ∈ ∂L2 TV(ρ1), (10)

which proves (TVW-EL).
Now we move on to study the family (βt)t>0. Since ρ1 = u+

t , by definition
βt = u−

t /t and using the fact that ∂L2 TV(u) ⊂ ∂L2 TV(u−) in conjunction with
Eq. (9), it holds that

ψ1 − βt ∈ ∂L2 TV(βt). (11)

But then, from Prop. 1, βt solves (ROF) with g = ψ1 and λ = 1. As this problem
has a unique solution, the family {βt}t>0 = {β} is a singleton.

Since Ω is convex, and we know that the Kantorovitch potentials are Lipschitz
continuous, cf. [19], so β, as a solution of (ROF) with Lipschitz data g = ψ1, is
also Lipschitz continuous with the same constant, following [16, Theo. 3.1].

But from (10) and the characterization of the subdifferential of TV, there is
a vector field z such that z · Dρ1 = |Dρ1| such that

β − ψ1 = div z,

and as a consequence div z is also Lipschitz continuous, with constant at most
twice the constant of ψ1.

In the general case of ρ0 ∈ L1(Ω), define ρ0,N
def.= cN (ρ0 ∧ N) for N ∈ N,

where cN is a renormalizing constant. Then ρ0,N ∈ L∞(Ω) and ρ0,N
L1

−−−−→
N→∞

ρ0.
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Let ρ1,N denote the unique minimizer of (TV-W) with data term ρ0,N , we can
assume that ρ1,N w-� converges to some ρ̃. Then for any ρ ∈ P(Ω) we have

TV(ρ1,N ) +
1
2τ

W 2
2 (ρ0,N , ρ1,N ) ≤ TV(ρ) +

1
2τ

W 2
2 (ρ0,N , ρ).

Passing to the limit on N → ∞ we have that ρ̃ is a minimizer and from unique-
ness it must hold that ρ̃ = ρ1.

Hence, consider the functions zN , ψ1,N , βN that satisfy (TVW-EL) for ρ1,N .
Up to a subsequence, we may assume that zN converges weakly-� to some z ∈
L∞(Ω;Rd). Since ψ1,N , βN and div zN are Lipschitz continuous with the same
Lipschitz constant for all N , by Arzelà-Ascoli, we can assume that ψ1,N , βN

and div zN converge uniformly to Lipschitz functions ψ1, β,div z = β − ψ1. In
addition, passing to the limit in (11), we find that β solves (ROF) for λ = 1 and
g = ψ1.

Since βN converges uniformly and ρ1,N converges w-� we have

0 = lim
N→∞

∫
Ω

βNρ1,Ndx =
∫

Ω

βρ1dx,

and hence βρ1 = 0 a.e. in Ω since both are nonnegative. In addition, ψ1 is a
Kantorovitch potential associated to ρ1 from the stability of optimal transport
(see [19, Thm. 1.52]). From the optimality of ρ1,N it holds that

TV(ρ1,N ) +
1
2τ

W 2
2 (ρ0,N , ρ1,N ) ≤ TV(ρ1) +

1
2τ

W 2
2 (ρ0,N , ρ),

so that limTV(ρ1,N ) ≤ TV(ρ1). Changing the roles of ρ1 and ρ1,N we get an
equality. So it follows that∫

Ω

(β − ψ1)ρ1dx = lim
N→∞

∫
Ω

(βN − ψ1,N )ρ1,Ndx = lim
N→∞

TV(ρ1,N ) = TV(ρ1),

Since TV is 1-homogeneous we conclude that β − ψ1 ∈ ∂ TV(ρ1). �

We say E is a set of finite perimeter if the indicator function 1E is a BV
function, and we set Per(E) = TV(1E). As a byproduct of the previous proof
we conclude that the level sets {ρ1 > s} are all solutions to the same prescribed
curvature problem.

Corollary 1. The following properties of the level sets of ρ1 hold.

1. For s > 0 and ψ1 in (TVW-EL)

{ρ1 > s} ∈ argmin
E⊂Ω

Per(E;Ω) +
1
τ

∫
E

ψ1dx

2. ∂{ρ1 > s} \ ∂∗{ρ1 > s} is a closed set of Hausdorff dimension at most
d − 8, where ∂∗ denotes the reduced boundary of a set, see [1]. In addition,
∂∗{ρ1 > s} is locally the graph of a function of class W 2,q for all q < +∞.
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Proof. For simplicity take τ = 1. Inside the set {ρ1 > s}, for s > 0, we have
−ψ1 = div z, so from the definition of the perimeter we have∫

{ρ1>s}
−ψ1dx =

∫
{ρ1>s}

div zdx ≤ Per ({ρ1 > s}) .

So using the fact that TV(ρ1) =
∫

Ω
−ψ1dx, the coarea formula and Fubini’s

Theorem give
∫ +∞

0

Per(1{ρ1>s})ds =
∫

Ω

−ψ1

∫ ρ1(x)

0

dsdx =
∫ +∞

0

∫
{ρ1>s}

−ψ1dxds.

Hence, Per({ρ1 > s}) = ∫
{ρ1>s} −ψ1dx for a.e. s > 0. But as βψ1 = 0 a.e., we

have −ψ1 = div z in {ρ1 > s}, so that −ψ1 ∈ ∂ TV(1{ρ1>s}) for a.e. s > 0; and
by a continuity argument, for all s > 0. The subdifferential inequality with 1E

gives

{ρ1 > s} ∈ argmin
E⊂Ω

Per(E) +
∫

E

ψ1(x)dx. (12)

Item (2) follows directly from the properties of (ROF), see [6], since ρ1 = u+,
where u solves a problem (ROF).

3 Numerical Experiments

We solve (TV-W) for an image denoising application using a Douglas-Rachford
algorithm [9] with Halpern acceleration [11], see Table 1. For this we need sub-
routines to compute the prox operators defined, for a given λ > 0, as

proxλTV(ρ̄)
def.= argmin

ρ∈L2(Ω)

TV(ρ) +
1
2λ

‖ρ − ρ̄‖2L2(Ω) , (13)

proxλW 2
2
(ρ̄) def.= argmin

ρ∈L2(Ω)

1
2τ

W 2
2 (ρ0, ρ) +

1
2λ

‖ρ − ρ̄‖2L2(Ω) . (14)

We implemented the prox of TV with the algorithm from [10], modified to
account for Dirichlet boundary conditions. From [7, Theo. 2.4] it is consistent
with the continuous total variation. The prox of W 2

2 is computed by expanding
the L2 data term as

proxλW 2
2
(ρ̄) = argmin

ρ∈L2(Ω)

1
2τ

W 2
2 (ρ0, ρ) +

1
2λ

∫
Ω

ρ2dx +
∫

Ω

ρ
(
− ρ̄

λ

)
︸ ︷︷ ︸

=V

dx +
1
2λ

ρ̄2dx︸ ︷︷ ︸
cst

= argmin
ρ∈L2(Ω)

1
2τ

W 2
2 (ρ0, ρ) +

1
2λ

∫
Ω

ρ2dx +
∫

Ω

ρV dx,

which is one step of the Wasserstein gradient flow of the porous medium equation
∂tρt = λ−1Δ(ρ2t ) + div (ρt∇V ), where the potential is V = −ρ̄/λ, see [13,19].
To compute it we have used the back-n-forth algorithm from [13].
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Algorithm 1. Halpern accelerated Douglas-Rachford algorithm
β0 ← 0
x0 ← Initial Image
while n ≥ 0 do

yn ← proxλ TV(xn)
λn ∈ [ε, 2 − ε]

zn ← xn + λn

(
proxλW2

2
(2yn − xn) − yn

)

βn ← 1
2

(
1 + β2

n−1

)
� Optimal constants for Halpern acceleration from [11]

xn+1 ← (1 − βn)x0 + βnzn

end while

3.1 Evolution of Balls

Following [8], in dimension 1, whenever the initial measure is uniformly dis-
tributed over a ball, the solutions remain balls. In R

d, one can prove this remains
true. If ρ0 is uniformly distributed over a ball of radius r0, then the solution
to (TV-W) is uniformly distributed in a ball of radius r1 solving the following
polynomial equation for r1

r21(r1 − r0) = r20(d + 2)τ.

This theoretical predictions are corroborated by the numerical experiments found
in Fig. 1.

Fig. 1. Evolution of circles: from left to right initial condition and solutions for τ =
0.05, 0.1, 0.2. The red circles correspond to the theoretical radius. (Color figure online)

3.2 Reconstruction of Dithered Images

In this experiment we use model (TV-W) to reconstruct dithered images. In
P(R2) the dithered image is a sum of Dirac masses, so the model (TV-W) out-
puts a new image which is close in the Wasserstein topology, but with small
total variation. In Fig. 2 below, we compared the result with the reconstruction
given by (ROF), both with a parameter τ = 0.2. Although the classical (ROF)
model was able to create complex textures, these remain granulated, whereas
the (TV-W) model is able to generate both smooth and complex textures.
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Fig. 2. Dithering reconstruction problem. From left to right: Dithered image, TV-
Wasserstein and ROF results.

4 Conclusion

In this work we revisited the TV-Wasserstein problem. We showed how it can
be related to the classical (ROF) problem and how to exploit this to derive the
Euler-Lagrange equations, obtaining further regularity. We proposed a Douglas-
Rachford algorithm to solve it and presented two numerical experiments: the
first one being coherent with theoretical predictions and the second being an
application to the reconstruction of dithered images.
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