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ONE-DIMENSIONAL APPROXIMATION OF MEASURES IN
WASSERSTEIN DISTANCE

BY A~TONIN CHAMBOLLE, VINCENT DUVAL

& Joio MiGueL. MacaADO

AssTract. — We propose a variational approach to approximate measures with measures uni-
formly distributed over a 1-dimensional set. The problem consists in minimizing a Wasserstein
distance as a data term with a regularization given by the length of the support. As it is chal-
lenging to prove existence of solutions to this problem, we propose a relaxed formulation, which
always admits a solution. In the sequel we show that, under some assumption on the original
measure, a solution to the relaxed problem is a solution to the original one. Finally we prove
that, whenever the original measure has a density in Ld/(d_l)(Rd), any optimal solution is
supported by an Ahlfors regular set.

Résumic (Approximation unidimensionnelle de mesures au sens de la distance de Wasserstein)

Nous proposons une méthode variationnelle pour approcher des mesures par des mesures
distribuées uniformément sur un ensemble de dimension 1. Le probléme consiste & minimiser
un terme de fidélité donné par la distance de Wasserstein, plus un terme régularisation donné
par la longueur du support. Puisque que l'existence de solutions pour ce probléme semble
difficile & démontrer directement, nous introduisons une formulation relaxée qui admet toujours
une solution. Nous montrons alors que, sous certaines hypotheses sur la mesure originale, les
solutions du probléeme relaxé sont bien des solutions du probléme original. Enfin, nous montrons
que, si la mesure originale a une densité dans Ld/(d’U(Rd), le support de toute solution est
Ahlfors-régulier.
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1. INnTRODUCTION

In this paper we study the following 1-dimensional (1D) shape optimization prob-
lem: given a reference probability measure py € P,(R%) (the set of Borel probability
measures p with fRd |x|pdp < 400, p > 1), we seek to approximate pg with measures
uniformly supported on a one-dimensional connected subset of R?. This approxima-
tion is done by means of the following variational problem

P inf WP AFH(Z
(Pr) Jnf W' (po, ve) + AIC(Z),
where the measure vy, is defined as

1) L 30y frnen {2 c i, 0 <IE) < oo }
HL(X) compact, connected

and H! denotes the 1-dimensional Hausdorff measure in R?. The term W, denotes

the usual Wasserstein distance on the space of probability measures (see [30, 32] and

Section 2.1.3).

One can trace the idea of approximating a probability measure by a 1D set back
to the concept of principal curves from the seminal paper [16], which extends linear
regression to regression using general curves, and introduces a variational problem to
define such curves. In this variational sense, a principal curve minimizes the expecta-
tion of the distance to the curve, with respect to a probability measure describing a
data set (with some regularization to ensure existence). As proposed in [17], a length
constraint is a simple and intrinsic way to ensure existence. The properties of such
minimizers have been studied in detail in e.g. [20, 12].

A further generalization consists in replacing the curve with a more general one-
dimensional compact and connected set, yielding the average distance minimizer prob-
lem introduced in [7], and its dual counterpart mazimum distance minimizer prob-
lem [27, 19]. Such problems were conceived for applications in urban planning, where
one seeks to minimize the average distance to a transportation network, giving rise
to the need for a larger class of 1D sets allowing for bifurcations.

While the above-mentioned problems only focus on some geometric approximation
of the support of the measure, approximating a measure in the sense of weak con-
vergence is sometimes more desirable. In [18, 8], the authors have proposed optimal
transport based methods for the projection of probability measures onto classes of
measures supported on simple curves, using the Wasserstein distance as a data term.
Potential applications range from 3D printing to image compression and reconstruc-
tion. In [13], the data fidelity term is chosen to be a discrepancy, see also [26]. The
advantage of using discrepancies is that approximation rates can be given indepen-
dently from the dimension, being therefore a good alternative to overcome the curse
of dimensionality. The problem we study is an attempt to generalize this class of
problems to the approximation with one-dimensional connected sets.

One difficulty when studying (Pa) is that the class of measures vs is not closed in
the usual weak topologies considered for the space of probability measures. While a
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Ficure 1. Concentration effects for the weak convergence of mea-
sures. Here ¥,, is made of two lines getting closer and a spiral con-
verging to a point. In the Hausdorff limit we obtain a segment with
shorter length, and a singular limiting measure.

sequence of sets (X,,)nen in A with uniformly bounded length will have subsequences
converging (in the Hausdorff sense) either to a point or a set in A, the correspond-
ing measures vy, might converge to a measure which is not necessarily uniform on
that set: longer parts of ¥, might concentrate in the limit on shorter parts of X,
see Figure 1.

Hence, minimizing sequences converge in general to a measure which is not of the
form vy, and we need to determine a relaxation of our energy in a topology for which
the Wasserstein distance is lower semi-continuous, such as the narrow convergence.
The relaxed energy takes the form
(Py) inf W0 (po,v) + AL (v),

veP, (RY)
where the length functional £, defined in Section 3.1, generalizes the notion of length
of the support of a measure, see for instance Example 3.6. We will show later on,
in Proposition 3.8, that £ is the lower semi-continuous relaxation, for the narrow
topology, of the functional ¢ given by H!(X) for measures of the form vs, and +oco
else, see (3.1). We also find that £(v) < oo if and only if suppr € A or v is a Dirac
mass. The following theorem gathers the various results proved throughout this paper.

Tarorem 1.1. — Let pg € Pp(RY), A > 0. Then (Py) admits a solution v, and there
exists A, = 0 such that if A > A, v is a Dirac mass. For A < Ay, v is supported by
a set X € A and the following properties hold.

(1) If po is absolutely continuous with respect to H', or has a L™ density with
respect to H1, then so does v.

(2) If po does not give mass to 1D-rectifiable sets, then v = vy, and therefore is a
solution to the original problem (Py).

(3) If po € LY@=)(RY), then ¥ is Ahlfors regular, i.e., there is ro depending on
d,p, po and L(v) and C depending only on d,p such that for any x € ¥ and r < rq it
holds that

r < HYENB,.(x)) < Or.

The paper is organized as follows: in Section 2 we recall a few tools from optimal
transport and geometric measure theory. Next, in Section 3 we go through the defi-
nition of the length functional and its properties as well as the relaxed problem and
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104 A. CiamBorrk, V. Duvar & J. M. Macnabo

the existence of a solution. In Section 4 we discuss the existence of A,. In Section 5
(Theorem 5.4) we prove point (1) from Theorem 1.1, while the existence is proved in
Section 6 (Theorem 6.4), and the Ahlfors regularity is studied in Section 7.

2. PRELIMINARIES

We start by introducing notions of convergence for sets and measures which will be
useful to study problem (Py) as well as the relaxed one (P, ). Next we describe some
instrumental properties of the objects we shall use throughout the paper, namely the
rectifiable sets and measures.

2.1. CONVERGENCE OF SETS AND MEASURES

2.1.1. Hausdor[f and Kuratowski convergence. — We recall some useful definitions of
convergence for sets, see for instance [29, Chap. 4], [3, Chap. 6].
The Hausdorff distance between two sets A, B is defined as:

(2.1) dsc(A, B) < max{sup, 4 dist(a, B), sup, g dist(b, 4) },

where dist(:, A) denotes the distance function to the set A. A sequence (A,),cy of
closed subsets of R? converges in the Hausdorff sense to A if lim,, o dsc(Ay, A) = 0,
and we write A, ~ %5 A. One can prove that this notion of convergence is equivalent
to uniform converTngrfge of the distance functions. Since the latter are 1-Lipschitz, as a
consequence of Arzela-Ascoli’s theorem it follows that if the sequence is contained in
a compact set, one can always extract a convergent subsequence. This compactness
result is known as Blaschke’s theorem, see [3, Th.6.1].

A sequence of closed sets C,, converges in the sense of Kuratowski to C, and we
write C, Zi%? C, whenever the two properties hold:

(1) Given a sequence x,, € Cy,, all its cluster points are contained in C.
(2) For all points « € C there exists a sequence x,, € Cy,, converging to x.

Again, one can show that C,, — C in the sense of Kuratowski if and only if
dist(x, Cp,) — dist(z,C) (possibly infinite if C' = &) locally uniformly (see [29,
Cor. 4.7]). In addition, the Bolzano-Weierstrass property holds for the Kuratowski
convergence as well, i.e., any sequence of closed sets has a subsequence which
converges, possibly to the empty set.

It is classical that Hausdorff and Kuratowski convergences coincide on sequences on
uniformly bounded compact sets, the next lemma describes a more subtle relationship.
We prove it in Appendix B.

Lemva 2.1. — Let (Cy)nen be a sequence of closed sets in R?, converging to C in the
sense of Kuratowski. Then, for any x € R?,

Cp, N Br(z) -2 € N Bg(z),

n—oo

for every radius R > 0 such that C N Bg(z) = C N Bgr(x). Moreover, that condition
holds for all R > 0 except in a countable set.

JEP. — M., 2095, tome 12



ONE-DIMENSIONAL APPROXIMATION OF MEASURES IN WASSERSTEIN DISTANCE 105

2.1.2. Convergence of measures. Given a Borel set X C R%, we denote by M(X)
(resp. M4 (X)) the collection of the finite (resp. finite positive) Radon measures on X.
The space of Borel probability measures on X is denoted by P(X), and P,(X) refers
to its subset of probability measures with finite p-moment (p > 1).

Following [3], we say that a sequence (tin),cy of Radon measures on R? locally
weakly-* converges to some Radon measure p, if, for every continuous function with
compact support ¢ € C(R9),

(2.2) [ ot == [ odn.

Any sequence (fin)nen of Radon measures such that sup,,cy |pin| (K) < +oo for every
compact set K C R? has a locally weakly-+ convergent subsequence.

If {sin},en C© M(RY) is a sequence of finite Radon measures and (2.2) holds for
every bounded continuous function ¢ € Cy,(R?), we say that p, narrowly converges
to u, and we write p,, —— p. When (p, )nen is a sequence of probability measures,
that convergence is often; rogferred to as the weak convergence of probability measures.

If X is compact, any sequence of probability measures {un}tnen C P(X) has
a weakly convergent subsequence. More generally, if X is not compact, compact-

ness for the narrow convergence requires the assumptions of Prokhorov’s theorem,
see [2, Th.2.8].

2.1.3. Optimal transport and the Wasserstein distance. — The Wasserstein distan-
ces W, are defined through the value function of an optimal transport problem,
see [4, 30, 32] for details. Given two probability measures u,v € P,(R?), we set

(2.3) Wy ™ win [ ooy,
R x R4

yEN(p,v)

where II(p, v) = {yePR?xRY) : moyy = p, myy=v} is the space of transport
couplings, and m; denote the projections, i.e., mo(z,y) = = and m(z,y) = y. When-
ever y does not have atoms, the value of (2.3) coincides with

(2.4) inf / & — T(a)Pdp,

Tu,u:u Rd
where the inf is taken over all measurable maps T' such that Tyu(A) = v(A) =
w(T~=1(A)) for any Borel set A.

The optimal transport problem can be analogously defined for any pair of positive
p,v in M4 (RY). In this case, the Wasserstein distance becomes a 1-homogeneous
functional and is finite if and only if the measures have finite p-moments and the
same total mass p(R?) = v(R?).

The Wasserstein distance is l.s.c. with respect to the narrow convergence, and
continuous in a compact domain, [32, Lem. 4.3].

JE.P. — M., 2095, tome 12



106 A. CiamBorrk, V. Duvar & J. M. Macnabo

2.2. GOLAB’S THEOREM. We now study the lower semicontinuity of (Py). “Golab’s
theorem” [15] shows that along sequences of connected sets, the length is lower semi-
continuous with respect to the Hausdorff convergence [24, Chap. 10]. It is of course
also true if the sequence has a uniformly bounded number of connected components.

The issue is that the compactness of Hausdorff convergence is not transferred to
the weak convergence of measures of the form H'L_ ¥ which may concentrate in the
limit. In general, one can prove the following:

Trurorem 2.2 (Density version of Gotab’s theorem). — Let (X,),,cx
closed and connected subsets of R% converging in the sense of Kuratowski to some
closed set ¥ and having locally uniformly finite length, i.e., for all R > 0

be a sequence of

sup H*(2,, N Br(z0)) < +oo.

neN
Define the measures py, 4l gl L_X,, and let p be a local weak-x cluster point of this
sequence. Then supp u C X and it holds that

p=HLE,
in the sense of measures.

Such a result is hidden in the proof in [5] of the usual thesis of Golab’s theorem,
see also [28]. Yet in this variant, we consider a Kuratowski convergence and do not
restrict the sets to be uniformly bounded, or have bounded lengths. This is useful for
the proof of Theorem 6.1 where we consider sequences of blow-ups of sets. The proof
of Theorem 2.2 is given in Appendix B.

2.3. RECTIFIABLE SETS AND MEASURES. We now introduce the notions of rectifiable
sets and rectiftable measure, which will be crucial for understanding the fine properties
of the elements of A.

Derinirion 2.3. — Let M € R? be a Borel set and k € N, we say that M is countably
HF-rectifiable, or shortly k rectifiable, if there are countably many Lipschitz functions
fi : R¥ = R? such that

U-Ck(M\ U fi(Rk)) ~0.

€N
A Radon measure p is said to be k-rectifiable if it is supported over a k-rectifiable set
and p < H*.

In the simple case M = f(E), for E C R*, one can define the tangent space at a
point of differentiability of f as

VI()(RY), for z = f(2).
This is a parametric definition that can be extended to k-rectifiable sets. It turns out

the parametric notion of tangentiability can be expressed in terms of measure theory.

JIEP. — M., 2095, tome 12



ONE-DIMENSIONAL APPROXIMATION OF MEASURES IN WASSERSTEIN DISTANCE 107

Given a Borel set M, we set the measure p = H* L M, and we consider the family of

blow-up measures

M —
r

(2.5) T rikq);:’ru = HF L (

If M is countably H*-rectifiable, and H*(M N K) < +oo for every compact set K,
we say that M is locally H*-rectifiable, and then the blow-up theorem, see [23,
Th.10.2], states that for H*-a.e. x € M this family of measures converges in the
weak-x topology to a measure of the form 3¥|_ 7, for a unique k-plane 7, € G(k,d),
the Grassmannian of k-planes of R?.

id—x

x def.
x,r det
), for ®*" = "

More generally define the k-density, whenever the limit exists, of a Radon measure p
as
(2.6) O (p,2) = lim “(L(jf)) and  0,(M,2) L 0, (HF L M, z),

r—0t  WgT
where wy, is the volume of the unit k-dimensional ball, see [3, 23]. A direct consequence
of the blow-up theorem is that J*-a.e. point of a k-rectifiable set has k-density 1.
Analogously for a k-rectifiable measure p it holds that p = 0 (u, z)H* L M.

The equivalence between all notions was completed with the work of Preiss and
the notion of a tangent space to a measure, see for instance the monograph [11].
It implies that a measure (resp. a set) which has almost everywhere a finite and non
zero k-density is k-rectifiable. In particular, one has the following theorem.

Turorem 2.4. — Let p1 be a Radon measure over R?, the following are equivalent.

(i) p is k-rectifiable.

(ii) For H*-a.e. x € supp u, the limit in (2.6) exists and

—k xx,7 * k
¢ ) \
r i 1% r—0 Hk,(/,&,.’lf)j'( I—ﬂ-wa

for a unique k-plane 7, € G(k,d).

(iii) For H*-a.e. x € supp u, the k-density of p in (2.6) exists, is finite and positive.

In the previous theorem, if we take p = H¥L_M where M is a countably
HF-rectifiable set we define the approzimate tangent space of M at = as T, M =y Moy

where 7, is the unique k-plane from point (ii).

Derizition 2.5, — Let M C R? be a k-rectifiable set. We say that 2 € M is a recti-
fiability point when the locally weakly-x convergence of point (ii) from Theorem 2.4
holds, with u = H*¥ L M and 0 (u,z) = 1.

Now we pass to our case of interest, of compact connected sets X with finite length,
HL(X) < +o00, in view of (1.1). From [10, Prop. 30.1 & Cor. 30.2] or [1, Th. 4.4], any
compact connected set with finite length is also path-connected, i.e., any pair of its
points can be joined by a continuous arc. Such sets are also known to be 1-rectifiable,
see [5, Th.4.4.8], and hence they enjoy the properties of Theorem 2.4. In the next
lemma, we show that the blow-up of some ¥ € A around a rectifiability point is
precisely its approximate tangent space.

JE.P. — M., 2095, tome 12



108 A. CiamBorrk, V. Duvar & J. M. Macnabo

Lemwva 2.6. Given ¥ € A, then for H'-a.e. y € &, it holds that

s Sy _
Y K s and Z=YABr0) - 7,5 A BR(0), for all R > 0.
r r—0t r r—0t

Proof. First we take a rectifiability point y € ¥ with tangent space T, %, by Theo-
rem 2.4 such points cover H'-a.a. of ¥. In particular, point (ii) of the theorem shows
that

HL(Z—y)/r) To H'LT,X.

Let T be the (Kuratowski) limit of a subsequence (X —y)/ry. Clearly, the limit measure

H!' LT, is supported by T, hence 7,3 C T'. Thanks to Lemma 2.1 and Theorem 2.2,

for almost all R > 0,

Y-y
Tk

which shows that up to a H'-negligible set, 7' = T, 3.

Notice that, if there is some = € T \ T,X, we may consider some ball B(x)
which does not intersect 7,3. Since T is the limit of connected sets, x must be
path-connected in 7' to some point in (Bs(z))¢, so that (T N Bs(z)) > s. This
contradicts (2.7). Hence T' = T,,%, and is independent of the subsequence, and we

(2.7) H(T N Bg) < likrgiololfﬂ'fl( ﬂBR) = HY(T,% N Br),

deduce that (X — y)/r Y T,%. The convergence in the Hausdorff distance follows
from Lemma 2.1. O

3. THE LENGTH FUNCTIONAL AND THE RELAXED PROBLEM

If a minimizing sequence 3,, converges to some set 3, we cannot expect weak cluster
points of the measures vs;, to have the form vy, see Figure 1. Hence the objective
of (Py) is not lower semi-continuous for the narrow convergence, and, in this section,
we introduce a relaxation for (Py). First, we define a functional which extends the
length of the support and we discuss some of its properties, then we use it to define
the relaxed problem.

3.1. DEFINITION AND ELEMENTARY PROPERTIES. Recalling that A is the collection of
the compact connected sets ¥ C R? with 0 < H1(X) < 400, we consider

1
HL(Z)
400 otherwise,

HY(®) ifv= HIL Y for some X € A,

(3.1) :PRY v

so that (Py) becomes inf, W} (po, )+ Al(v). As discussed above, £ is not L.s.c., hence
we introduce the following relaxation, which we call the length functional. For any
v € P(R?), we define

inf{a > 0| av > H'L suppv} if suppv is connected,

400 otherwise,

(3.2) L(v) < {

with the convention that inf @ "= +oc. Notice that, since v is a probability measure,
L(v) > H'(suppv), and that L(r) = 0 if and only if v = §, for some z € R%

JEP. — M., 2095, tome 12



ONE-DIMENSIONAL APPROXIMATION OF MEASURES IN WASSERSTEIN DISTANCE 109

As a result, 0 < £(v) < oo if and only if suppr € A. Moreover, for any ¥ € A and
def.

vs = (1/HY(E))HL B, we have L(vs) = HY(X) = ((vs).

Remark 3.1. Definition (3.2) also makes sense for any positive measure pu €
M, (R?). In that case, thanks to Theorem 2.2, it may be easily shown to be lower
semi-continuous with respect to the weak convergence, defining £(0) = 0 (see also
Section 3.2). Yet then, of course, even for uniformly distributed measures such as
v = 0H' LY for some § > 0, its value does not coincide with the length of the
support anymore (it rather is H!(2)/v(R9)).

In Section 3.2 below, we prove that £ is the lower semi-continuous envelope of ¢
for the narrow topology of probability measures. Before that, let us discuss some
alternative formulations for £. Following [3, §2.4], we consider the upper derivative,

1
o B, 3
(3.3) Vo € suppr, D (H'L suppv)(z) 4 Jim sup HC(By(z) N supp V).
0+ v(Br(x))

Prorosition 3.2 (Alternative definitions of £). Let v € P(RY) be such that supp v
is connected. Then

! v
(3.4) L(v) = sup{g{(UVr;US,)m)p) | U open, U N supp v # @}
(3.5) = sup{g-(l(B;Ez)r?z?)lpp V) | 7> 0, x € supp y}
(3.6) = HD;F(J{I L supp 1/)||Oo ,

where ||-|| ., denotes the supremum norm over supp v.

Proof. — Tt is immediate that
(R.H.S. of (3.2)) > (R.H.S. of (3.4)) > (R.H.S. of (3.5)) > (R.H.S. of (3.6)).

Now, assume that || D;f (H' L suppv)|| < +oc and let a > || D;f (H' L suppv)|| .
For every compact set K C R? and every € K N (suppv), there is some 7(x) > 0
such that H! (B,(z) N (suppv)) < av(B.(r)). We may extract from the covering
(B (2)(2))wek(suppw) With open sets a finite covering (B, (z;))~, of K N (suppv).
As a result

N
H(K N (suppv)) < ZQV(B” (z;)) < Na < +o0,
i=1

so that H'L_ (suppv) is a Radon measure. We may thus apply [3, Prop.2.21] to
deduce

(R.H.S. of (3.6)) > (R.H.S. of (3.2)).

If HD;”(J—(l L supp y)HOO = 400, the inequality holds trivially, which completes the
proof. O

The length functional inherits some of the properties of the 7! measure.

JE.P.— M., 2095, tome 12



110 A. CiamBorrk, V. Duvar & J. M. Macnabo

Prorosition 3.3. Let f: R? — R?, be a k-Lipschitz function, with k > 0. Then

(3.7) Vv € P(RY), L(fsv) < kL(v).

Proof. — If L(v) = +oo, there is nothing to prove. Otherwise, supp v is compact, and
supp(fyv) = f(supp v). Moreover, for any open set U C R%, since f~1(U) is open,

U N (supp fyv) # @ <= v(f~1(U)) >0 <= f~'(U)N (suppvr) # 2.

Now, let U be an open set which intersects supp( fyv). Using that

UnN f(suppv) C f(f_l(U)ﬁsuppy)7

we get
H (U N supp(fyv)) _ HY(U N f(suppv))) o ! (f (f_l(U) N supp y))
far(U) v(f~1(U)) h v(f~1(U))
H (f~1(U) Nsuppv)
SR
< KLW),

since f~1(U) is an open set which intersects supp v. Taking the supremum over all U
yields the claimed inequality. (|

It is also possible to express the length-functional using the Besicovitch differenti-
ation theorem [3, Th.2.22]. Assume that H'(suppv) < +oo (otherwise £(v) = +00).
Then, the measure ' L supp v is Radon, and the limit

I (By(x) Nsuppr)

(38) Dy (K L suppv)(a) = lim, === 0
(39) (resp- Do ) i s A

exists for v-a.e. x (resp. H' L suppr-a.e. x).

Prorosition 3.4 (Alternative definitions, II). — Let v € P(R?) such that suppv is
connected and H'(suppv) < +oo. Then
H d(H' L suppv) H
dv L
+o00 otherwise.

(3.10)  L(v) = if (3L suppr) < v,

if supp v is a singleton,
3.11 -1
( ) H ( 0 I_ ) H N otherwise.
Supp V) L&cl L supp v

Notice that in Proposition 3.4, both “norms” may take the value +00, and in (3.11),
we adopt the convention that 1/0 = +oo0.
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ONE-DIMENSIONAL APPROXIMATION OF MEASURES IN WASSERSTEIN DISTANCE 11T

Proof of Proposition 3.4. — First, we prove (3.10). If (H'L suppr) < v then the
Lebesgue-Besicovitch differentiation theorem ensures that

d (9{1 L supp V) ) o H d (le L supp 1/)

Sl S i P PP | ek S it

1 _
H I_suppu—( P

dv HLgo '
Therefore,
d (5{1 L supp 1/) H

<
Lv) < H dv

< ||DjF (#" L supp V)Hoo = L(v).

If (3{1 L supp 1/) is not absolutely continuous with respect to v, there is no a > 0
such that av > H' L suppv, and £(v) = +oo0.

Now, we prove (3.11). The case where suppv is a singleton is already known.
We assume now that 3! (supp v) > 0, and using the Besicovitch differentiation theo-
rem [3, Th. 2.22], we decompose

(3.12) v=0K'L suppv +°,

where
def. dv . v(By(x)) _
= - = 1 = D+ 1

b() d(H'L suppv) (z) 0+ H (B, (x) Nsuppr) (D7 (O L suppw)(2))

for (5{1 L supp V)-a.e. x. From the last equality, we get
H IHLOO ||Dj(9{1|_suppy)(:r)’|oo = L(v).

gl supp v

To prove the converse inequality, we assume H9 < 400 (otherwise there

1
LOC
1L suppr

is nothing to prove). Using (3.12), we note that

([C P P s
HL1L suppv
so that L(v ||9 1||L°° O
1L suppv
We may now examine a few examples.
ExampLe 3.5. Let v =Y >, 27 "4, , where (gn)n>1 is a dense sequence in [0, 1].

The support being the set of points x such that v(B,(z)) > 0 for all r > 0, one has
supp v = [0, 1] which is connected. However, using (3.2), we see that £(v) = +oo.

Examere 3.6 (Densities on a (!, 1)-rectifiable set). Let ¥ C R? be a closed
connected set with 0 < H*(X) < +oo, #: ¥ — R, a Borel function such that
fz OdH' < 1, and let v = OH'L_ X + v* be a probability measure, where suppv® C X
and the measures v* and 3! ¥ are mutually singular. Then £(v) = Hl/aHL%‘_E

the length functional ignores the singular part.

ExawpLe 3.7 (Parametrized Lipschitz curves). — Let v: [0,1] — R¢ be a non-
constant Lipschitz curve, and let v such that for all f € Cy(R?),

w2 ([ el
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112 A. CiamBorrk, V. Duvar & J. M. Macnabo

where len(y) fol |¥(t)| dt is the length of the curve. By the area formula [14,
Th. 3.2.5],

dv(y) = en () card(y") (y))d (H' LX) (y),

where ¥ = ~([0,1]). As a result,

len(y)

(3.13) L) = ess-minyey (card(y(~1(y)))’

where the minimum is an essential minimum with respect to F(1 L_X.

3.2. LOWER SEMI-CONTINUITY OF THE LENGTH FUNCTIONAL. — Now, we prove that £ is
the lower semi-continuous envelope of ¢ for the narrow convergence.

Prorosition 3.8. — The functional £ is the lower semi-continuous envelope of £ for
the narrow topology. Moreover, for every v such that L(v) < +oo,

(3.14) H*(suppv) < L(v),

with equality if and only if either v = &, for some x € R? (if H(suppv) = 0),
or H(suppr) > 0 and v = (1/H(suppv))H! L suppv, ie., v = vs for some
Y € A, as defined in (1.1).

Proof of Proposition 3.8. — The inequality (3.14) is clear from the definition of (3.2),
so we study the equality case.

If v = 0§, or v = (1/H (suppv))H! L suppv with H!(suppr) > 0, one readily
checks that £(v) = H!(suppv). Conversely, if (3.14) is an equality, for every Borel
set B,

0= L(v) — H'(suppv)
= (L(w)v(B) — H (BN suppv)) + (L(V)V(BE) — 3¢(B® M supp y)),

>0 >0
so that both terms must be zero. If £L(v) > 0, we deduce

HY(Bnsuppr) H'(BNsuppr)

VB c R? Borel B) = —
< RY Borel,  +(B) ) H(supp )

If £L(v) =0, H!(suppv) = 0 and since supp v is connected, v is a Dirac mass.

Next we prove that £ is sequentially lower semi-continuous. We consider (v, )nen
such that v, —— v € P(R?) and we show that o = liminf, . £(vy) = L(v).
If a=4o00, we ﬁ;%onothing to prove. Otherwise, up to the extraction of a subsequence,
we may assume that lim,,_, . £(v,) = a and that £(v,) < oo for all n € N.

Defining the sequence of compact and connected sets ¥, et Supp Vy,, it holds that
HY(X,) < L(vy), so that

sup H'(Z,) <a+1< 400
n>N
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ONE-DIMENSIONAL APPROXIMATION OF MEASURES IN WASSERSTEIN DISTANCE n3

for N large enough. Hence, for all n > N, diam(X,,) < a + 1. In addition, let = €
supp v. Since 0 < v(B1(z)) < liminf,, o vp(B1(x)), for all n large enough (supp v,)N
B (z) # @, thus supp vy, C Bata(z).

Therefore, we may apply Blaschke’s theorem and assume, up to extracting a subse-
quence, that X, ~ %, % From the weak convergence of measures one has suppv C 2.

n—oo
Let us show that suppr = 3. If ¥ is a singleton {z¢}, we have v = ¢,,. Otherwise,
Theorem 2.2 implies that ¥ € A and furthermore, as £(v,)v, > H' L3, that

(3.15) av > HLX.

Hence, as ¥ is connected, for all z € X it holds v(B,(z)) >0, confirming that supp v =X.
Finally from (3.15) we get that

liminf £(v,) = a > L(v),

n—roo
proving that £ is l.s.c.

As a result, we have proved that £ is l.s.c. and that £ = ¢ on the effective domain
of £. To show that £ is the ls.c. envelope of ¢, we prove that it is above any l.s.c.
functional § < £. Let v € P(R?). If L(v) = +oo, we have §(v) < L(v). If L(v) < +oo,
using Lemma 3.9 below, we can find a sequence vs;, —— v such that H1(%,) —

n—oo
L(v). The lower semi-continuity of § yields

S(v) < liminf G(vy, ) < liminf f(vs, ) = liminf H*(%,,) = L(v). O
n—roo n—oo n—roo
The proof of Proposition 3.8 relies on the following approximation lemma.

Lemva 3.9, Let v € P(RY) such that £L(v) <oo. There exists a sequence (X,),,cy CA
such that

D SILIN supp v,

. Us, n;% v and Wy(vs,,,v) — 0 for any p > 1, where vy, is defined as
in (1.1).
We also have H'(%,,) — L(v) and if, in addition £L(v) > 0, we can take H1(%,) =
L(v) for alln € N.
Proof. — To simplify the notation, we set « = £(v) and ¥ = suppv. For a = 0 (that
is, v = d,, for some zg), we consider

Yn = z0 4 [0,1/n] x {0}¢71,

which provides the desired approximation, with H'(3,) = 1/n — 0 = £L(8,,)-

For a > 0, we start by covering the space with cubes of the form

def. 1

Qz,n = -
n

For some fixed n, let (Qin);c; be the collection of the cubes such that v (Q.n) > 0,
since the set X is compact, I,, is finite for a given n. We define the quantities

(z+[0,1)%), for z € Z¢.

def.

min = aV(Qi,n) - :H:l(z N Qi,n) < q,
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4 A. Cuamsorre, V. Duvar & J. M. Macrapo

as the excess mass of v in the cube Q; , (note that m;, > 0 in view of (3.2)). Our
strategy is to modify v @, , by adding segments with uniform measure inside the
cube and having a total length equal to the excess mass m; .
If ¥NintQ,, # &, take x; in this intersection, so that By, (z;) C Qi for some
d; > 0. Then, set N, ,, = [m;.n/d:], and choose §; ; > 0 for j =1,..., N, , such that
Nin
Z dij = Min, and 0<d;; < d;.
i=1

<

Since H! (2NQi,n) < +00, it is possible to choose N; ,, vectors v; ; € S?1 such that the
segments S; et [xi, x; +0; jv; ;] are contained in int Q; ,, and satisfy HL (2NS;;)=0
yforj=1,...,N;n.

If ¥Nint Q; ,, = @, as the cubes have positive mass, it means that v is concentrated
on the boundary of the cube, in which case we take x; € ¥ N 9Q; and any family of
segments entering the cube will suffice.

Next, we define the measures

def. 1 1 def. Nin
LY, for¥, < suU S;.i.
HH(En) zg jL:Jl ’

From the construction, the Hausdorff distance between ¥ and X, is at most the
diagonal of the cube [0,1/n)¢, so that

VE n

n  n—oo

and the total length of ¥, is given by

Nin
HY(Sn) = D> H(ENQin)+ D> Y H'(Si))

i€l, i€l, j=1
=Y H(SNQin) T min =0 v(Qin)=a.
icl, i€l

Each ¥,, € A since it is connected and compact (as a finite union of compact sets).

To finish the proof, it remains to show that vs,, —— v. By construction, there
n—oo

exists a compact set K C R? such that (suppv) U, (supprs,) C K. Then any
function ¢ € Cy(R?) is uniformly continuous on K, and we denote by w its modulus
of continuity. Observing that vs, (Q;n) = V(Qin), we note that

‘ /R odvs, — /R odv| < > - ddvs, — /Q sy

i€l, i,m
<Y w(diam Qi n)v(Qi ) < w(Vd/n) —— 0.
n—oo
iel,
Hence vs;,, —— v. But as the support of all such measures is contained in the
n—oo
compact K and the Wasserstein distance metrizes the weak convergence in P,(K),
see (30, Th. 5.10], it holds that W, (vs,,,v) —— 0. O
n—oo
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ONE-DIMENSIONAL APPROXIMATION OF MEASURES IN WASSERSTEIN DISTANCE nb

Remark 3.10. The conclusions of Proposition 3.8 and Lemma 3.9 still hold when
replacing the narrow topology with the local weak-x topology.

3.3. A RELAXED PROBLEM WITH EXISTENCE OF sOLUTIONs. — The relaxed problem (P)
introduced on page 103 is defined by replacing ¢ in the original problem with its
Ls.c. envelope £. We define the energy &(v) < W2(po,v) + AL(v), and with a slight
abuse of notation, we sometimes write £(X) = £(vy) for ¥ € A. The main point of
considering this relaxed problem is that the existence of solutions for (P,) follows
from the direct method of the calculus of variations.

Tureorem 3.11. The relazed problem (Pp) admits a solution. In addition, & is the
Ls.c. envelope of Wl (po,-) + AL, and:

inf (Py) = min (Py).

Proof. — Let (vn),cn
+00, the moments of order p of v, are uniformly bounded (see for instance [30,

be a minimizing sequence for €. Since (sup, W¥(po,vn)) <

Th. 5.11]), and we may then extract a (not relabeled) subsequence converging to some
v € P(R?) in the narrow topology (by Prokhorov’s theorem). From Proposition 3.8
and the fact that the Wasserstein distance is lower semi-continuous, the functional &
is L.s.c. and we have that

&(v) < liminf €(v,) = inf (Py).

n— oo

The measure v is a minimizer of (Py).
To show that € is the l.s.c. envelope of the original energy one may argue as in the
proof of Proposition 3.8. Consider any l.s.c. functional G such that

Vv e P(RY),  G(v) < WE(po,v) + Al(v).

For every v with £(v) < +o0, we use Lemma 3.9 to build a sequence (vy,)nen such
that WP (po,vs,) — Wl (po,v). Indeed, as vy, converges to v for the Wasserstein
distance, the triangle inequality gives

‘Wp(Poa VEn) - Wp(ﬂovV” < Wp(VEan) —0.

n—oo

Hence for any v € P,(R?) it holds that
§(v) < liminf (WE(po,vs,,) + Ab(vs,)) = WE(po, ) + AL() = E(v),

and we conclude that € is the l.s.c. envelope. |

4. ON THE SUPPORT OF OPTIMAL MEASURES

Our goal for this section is to answer the question of “how small” A must be in
Theorem 1.1. For this, in Theorem 4.1 we study when solutions of the relaxed problem
(Py) are Dirac masses. Keeping this in mind, the rest of this section can be skipped
and the reader can move on to the main results of the paper.
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The following notation will be useful: a point x is said to be a p-mean of py if

To € arg min/ |z — y|Pdpo () = arg min W (po, dy).

yeRd  JRd yER
A 2-mean is just the mean of po, that is, m,, et Jga ©dpo(x). For p > 1, the p-mean is
uniquely defined, but for p = 1 the collection of 1-means is a closed convex set which
is not reduced to a singleton in general.

Tueorem 4.1. For a fized measure py € P,(R?) there exists a critical parameter
A, €[0,00) such that

o for A < A, no solution of (Pa) is a Dirac measure;

o for A > A, it holds that argmin (Py) is the set of p-means of po.

Moreover, A, = 0 if and only if pg is a Dirac mass.

We start by studying the support of the optimal measure, showing that it is con-
tained in the convex hull of the support of pg. In the sequel the proof of Theorem 4.1
will be divided in several steps. We end the section with an example of py composed
of 2 Dirac masses.

4.1. ELEMENTARY PROPERTIES OF THE SUPPORT. Given a set A C R? we denote by
conv A its closed convex hull.

Lemma 4.2. Let v € P(RY) be a solution to (Pyp). Then the following properties
hold

(1) 3 (suppv) < (1/M)W2(po,dm,, ) where My, is any p-mean of po. In particu-
lar, ¥ is contained in a ball of diameter do "< (1/A)W. 2 (pos0m,, )-

(2) supp v C conv (supp po) N B(mp0,2Wp(p0, 5mp0) (2/M)WP (po, (Smpo)),

Proof. — For the first point, let 3 denote the support of v. Since v has finite energy

we have that £(v) > 3!(X). Thus, since it is also optimal

(4.1)  AFY(E) < Wh(po,v) + AL(v) S WE(po,m,, ) + AL(Gm,,) = WE(po,bm,, )-
For the second point, let C < oty (supp po)- It is a nonempty closed convex set,

therefore the projection onto C' is well-defined and 1-Lipschitz. We denote it by f.
By Proposition 3.3, it holds that £(v) > £(fyv). Moreover, for every (z,y) € C x R?,

z—yl* =z — fF@)IP+1f @) =y +2(x— f), f) —y) = |z — fy)

>0

with equality if and only if y € C. As a result, if v is an optimal transport plan for
(pO’ )7

» (po, v /Ifc—ylpdv (,y) /\x— y)IF dy(z,y)
= [lo =y A4, 1) (w.0) > W oo, o),

with strict inequality unless y € C for y-a.e. (z,y) (hence v-a.e. y).
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But v is a solution to (P), therefore the inequality
Wi (po,v) + AL(v) = W) (po, fiv) + AL(fv)

cannot be strict. We deduce that y € C for v-a.e. y, and C being closed, that ¥ C C.

Additionally, from (4.1), we have Wy (v, 0, ) < 2Wp(po,dm,,) and in particular
there are points y € ¥ such that |y —my, | < 2Wy(po, o, ). Combined with the first
point, we obtain that ¥ C B(m,,, 2Wp(po, 0m,, ) + (2/A)WE(po, 6, ))- O

Exawrere 4.3. — Let pg = 0, for some xy € R Then both conditions from
Lemma 4.2 are sharp and characterize for all A > 0 the unique solution &, of (Pj).

4.2. WHEN soLUTIONS ARE Dirac masses. — Now, we discuss whether or not Dirac
masses are solutions in the case where pg is not a Dirac measure. We start with the
following lemma.

Levmwa 4.4. — Let A > 0 such that 6., € argmin (Py), for A’ > A it holds

o forp>1 that §,, is the unique solution of (Py/),
o for p =1 that arg min (Pa+) consists of only Dirac masses.

Proof. — 1f §,, € argmin (Py), for any p > 1, and for any measure v with £(v) > 0
it holds that

Wy (po, 0z0) < Wi (po,v) + AL(v) < Wy(po,v) + N L(v),

and hence v cannot be a minimizer of (Py/). Then for any p > 1 it holds that
arg min(Py) consists of Dirac measures. Whenever p > 1, the function y — W} (po, d)
is strictly convex and hence arg min(Py/) is a singleton. O

This simple lemma allows for the definition of the critical value A, as follows:
(4.2) A, inf{A > 0:argmin (Py) C (6),cga}-
As stated in Theorem 4.1, A, > 0 whenever pg is not a single Dirac mass, which is a
direct consequence of the convergence of solutions to pg when A goes to 0.

Levma 4.5. — For every py € Pp(RY), and A > 0, let vp be any solution to (Py).
Then

VN — Po-
A—0+

In particular, A, > 0 unless pg is a Dirac mass.

Proof. — If L(pg) < 400, it suffices to notice that

W5 (po,va) < W (po,va) + AL(va) < WY (po, po) + AL(po) = AL(po) A0+ 0

However, we need to handle the case where £(pg) = +00.
Let € > 0. By the density of discrete measures in the Wasserstein space, there
exists a probability measure of the form p = Zf\il a;6z, such that WP(po, ) < e.
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We may assume that N > 2. By connecting all the points {z;}1<i<n, We obtain a
compact connected set . with 0 < H!(X) < +oo. For every 6 € ]0, 1[, we then define

~ def. 9

Po = HI()
and we note that £(pg) < H(X)/0 < +o0.
By the optimality of vy,
Wh(po,va) < AL(va) + W) (po, va) < AL(po) + W (pos po)-

Taking the upper limit as A — 0%, and using the convexity of the Wasserstein
distance yields

limsup W) (po, va) < W} (po, po) < OW} (po,vs) + (1 — O)WF (po, p).

A—0+

HLES+ (1 —0)pu=0vs+(1—0)pu.

Letting # — 01 we obtain limsup,_,+ W2(po,va) < €. Since ¢ is arbitrary, the claim
follows.

For the last statement, we note that supp pp must be included in the Kuratowski
limits of suppvy as A — 0, so that if py is not a Dirac mass, neither is vy for A > 0
small enough. O

Next, we show that for A large enough, the solution becomes a Dirac measure.
ProrosiTion 4.6. — For every pg € Pp(RY), A, < +oo.
Proof. — Choose v € argmin (P,), let & et suppv and yg € X. Let
r < min{r’ > 0| C B(yo,r')}.
Since X is connected one has r < H*(X) < +o0. The convexity of the p-norm yields

-

1
Vo,y eRY, =y’ >z —yol” —plz —yol" " |y — yol-

As a result, if 7 is an optimal transport plan for (po,v),
e0)= [ o= ul d(e ) + ALW)
R4 xR
> [ ewl e —p [ o=l - ol dyleg) + AC(E)
R4 xR R4 xR
> e00)+ (A= [ o=l dole)).
R
By optimality of v, we have (v) < €(dy,), so that » = 0 and v is a Dirac mass

as soon as
(A - p/ |z — yolP " dpo(:r)> > 0.
R

On the other hand as soon as r > 0, this expression must be negative, and it follows
that

A< p/ & — yol"" dpo(a).
Rd

JIEP. — M., 2095, tome 12
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Note that this bound depends on v (through X) and therefore also on A. Yet, as
observed in the proof of Lemma 4.2, point (2), we can choose yyp € ¥ with |yo—m,,| <
2Wp(8im,,, » o). It follows that

A, < max (p/ |z — yo|p_1 dpo(ac))7
]Rd

Yo€B(mpg,2Wp (m  1p0))

which is a (pessimistic) a priori bound depending only on pg. a
Remark 4.7. In some cases, it is possible to provide sharper bounds on A,:

. If p=1, we see that A, < 1.

« If p = 2, it can be shown by a simple translation argument that v and pg

have the same barycenter. Then, one may adapt the above argument to get A, <
2 [ & — myp,| dpo(z), where m,, = [ zdpo(z).

4.3. THE EXAMPLE OF AN INPUT WITH TWO DIrAC MASSESs. — In this subsection we con-
sider the case p = 2. Let x_1 = (=1,0,...,0), z; = (1,0,...,0) € R and let
po = 3 (6z_, +62,). By Lemma 4.2, we know that the solutions to (P) are sup-
ported on line segments which are contained in [z_1,x1]. We may thus reduce the
problem to the one-dimensional setting, with x_; = —1, 1 = 1. The solution to that
problem is given by the following proposition.

Prorosition 4.8. — Forp=2 and py = 3 (6_1 + 61), the unique solution to (Py) is
given by

%}(&[-mﬁ(%—d%) (6_1+0y) if0<A<1/6,
43) v = st dtL [-3(1-24),3(1 - 24)] if1/6 <A <1/2,
do if A= 1/2.

Proof. — We fix A > 0 and denote v a solution. Let o = L(v). If @ = 0, v is
a Dirac mass. If a > 0, we know that the support of v is a connected subset of
conv{—1,1} = [—1,1], so that suppv = [a,b] for —1 < a < b < 1. In addition, letting
¢ € [a, b] such that v([a, c[) < 1/2 and v([a,c]) > 1/2, one can check that if some mass
is sent from {—1} to |c, b], then exchanging it with the same amount of mass sent from
{41} to [a,c[ we reduce the Wasserstein distance. Hence one may assume that the
mass coming from {—1} is sent to a measure v~ supported on [a, c] while the mass
from {+1} is sent to a measure v+ supported on [c, b], with v~ + vT = v. Observing
that v > L3 L [a, ] (we are in the case v > 0), we introduce the non-negative excess
measures:

1 1

Ve =V — —H'L[a,¢], vl.=v"—=H'L [e,b],
e e

and Vexe = Vege + I/;;C. Once more, we see that the Wasserstein distance is reduced

if all the mass sent from {—1} to v, is sent to the point {a}, closest to {—1}.

Hence, we may assume that v, = xd,, for z > 0, and similarly, vt = yd, for

y = 0. Eventually, we easily see that if @ > —1 and = > 0, then we can extend the

segment [a, b] towards {—1}, adding a small piece [a — 4, 4] for § < min{az,a + 1},
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send a fraction 6/« of the measure x4, rather to LH*L_[a — §,a], and reduce again
the Wasserstein distance without changing £(v). We deduce that x = 0 if a > —1,
similarly y =0 if b < 1.

Recalling that for p = 2, v must have the same center of mass as pg, we deduce

that v must be equal to

def.
Voo = 507

of. 1
or  Upop o z—bf]{l L [-b,b] for some b € ]0,1],
1 1

or Vg = éf}{l L [-1,1]+ (5 - a) (6_1+ 1) for some o > 2.

Let &(v) = AL(v) + WE(po, v) denote the energy to minimize. We have &(vp o) = 1 =
limy, o+ E(vp,2p), and

b dz b2
E(Vb_gb) = 2Ab+ 2/ (1 — 33)2* = — + (QA - 1)b+ 1,
’ 0 2b 3
. d 2b
Wlth &g(yb,gb) = g —+ 2A — 17
1
dx 2
=Aa+2 [ 1—2)*~=4+0=Aa+ —
€(11,0) = Aa + /0 (1-a)*—=+0 at o,
. d 2
with @8(”1704) =A-— ﬁ

« For 0 < A < 1/6, we check that v o+, for a* et v/2/3A, is the unique solution.

« For 1/6 < A < 1/2, we get that vy« g+ is the unique solution, with b* def-
3(1—2A).

« For A > 1/2, the functions a — E(v1 o) and b +— (v 9p) are strictly increasing
on [2,+o0[ and ]0, 1] respectively. Therefore 14 o is the unique solution to (Pa). O

5. SOLUTIONS ARE RECTIFIABLE MEASURES

Our goal here is to show that whenever py < H', any solution v is a rectifiable
measure of the form
v=0H'L_Y%, forfheL'(Z;H").
To this end, we introduce the excess measure ey as the positive measure given by
the mass of v that exceeds the density constraints. We first show that this measure
solves a family of localized problems. This is used to prove the absolute continuity
with respect to H' L3, that is, point (1) of Theorem 1.1.

5.1. The ExceEss MEASURE. — Let v be a minimizer of (P,) with support ¥ not redu-
ced to a singleton. From the definition of the length functional we have:

L(v) < oo if and only if there is o > 0 such that av > H' L X.
Setting « =y L(v) > 0, we define the following decomposition

def. _ def.
5.1 V= Ut + Vexe, Where vga = o THI LY and vexe = v — vger.
H ) H H
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The part v4¢1 is the measure which saturates the density constraint, and the support
of the excess measure Vex. is where the constraint is inactive.

In the sequel, we fix an optimal transport plan 7, for the problem defining
W2(po,v), and we define an analogous (non-unique) decomposition of v and po
by disintegrating ~ with respect to the second marginal. From the disintegration
theorem [3, Th.2.28], there exists a v-measurable family {v,},cge C P(R?), such
that v = v, ® v, that is

62 [ wwairea = [ ([ i) a). o e o),

We define a decomposition 7 = yg1 + Yexc as

(5.3) v31(A x B) et /EnB Yy (A)dvse (y),  Yexc(A X B) et /ZmB Yy (A)dVexe (y)-

The decomposition pg = pgct + pexc can be defined as the marginals of y4¢1 and Yexe

d;f' (7TO )ﬁerxc .

def.
(54) P = (7T0>ﬁ79'fla Pexc
This way vgc1 € (pact, Vacr), Yexe € I(Pexcs Vexe) and they are optimal transport
plans between their respective marginals. Indeed if we find a better transport plan for
either problem we can construct a better plan for the original problem, contradicting
the minimality of 7. We therefore also have a decomposition between the Wasserstein

distances
(5.5) W;zz;j (po,v) = WIZ; (pacr, vac1) +W;§(pexm’/ex13)'

Let us point out that, although the decomposition of v is natural, there are many
ways to decompose v and pg, for instance by choosing another disintegration family.
In the sequel we show that for any such decomposition the excess must be concentrated
on the graph of the operator given by the (multivalued) projection onto -

(5.6) Iy (z) < argmin |z — y|2.
yeD

Note that IIy is a multivalued operator which is included in the subgradient of the
convex conjugate of the function: y — |y|?/2 if y € ¥ and +oo else.

Lemma 5.1, — Let v be a minimizer of (Pa) andy an optimal transport plan from po
to v. Then, for any decomposition v = Y3c1 + Yexc, S-t. (ﬂl)wexc = Vexcs it holds that
(57) SUupp Yexe C graph(HE)'

In addition, for any ms, measurable selection of x — Il (x), the measure
vy + (T8)Pexc

is optimal for (Py).

Proof. — Consider the problem

@y) [ eyl dyle) + ()
YEPL(RYXR?) JRE xRe
(Wo)n'Y:POy

which is a reformulation of (Pj) in terms of the transport plan y from pg to v.
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Now, let (yg¢1, Yexe) be any suitable decomposition of v and let 7s; be a measurable
selection of ITy;. We set pexe et (WO)WeXC and define ¥ = yg¢1 + (id, 75) g pexc. Then,
since still 7147 > vg¢1, it holds that £(m47) < £(v) and

[ote=alrdi= [ Je-yPdmat [ oo msle)l dpo
R4 x R4 R4 xR4 R4

< / |z — y|” dyge +/ |z — y|” dyexe = / |z — y|” dy.
Rd xRd Rix X% R4 xRd

Since v is a minimizer of (Q, ), we must have an equality, in particular it holds that
/ (lz =y = |z = ms(2)]") dYexe = 0.
R4 xR¢

Since y-a.e. (z,y) is in R? x ¥, the integrand is nonnegative and must vanish yeyc-a.e.
Hence (z,y) € Graph(Ily) for yexc-a.e. (z,y) and (5.7) follows since Graph(Ily) is
closed.

As a consequence, the measure vqc1 + Ts4Pexc Teaches the minimum for (PA) and
is optimal. ([l

5.2. SOLUTIONS ARE ABSOLUTELY CONTINUOUS. — Now we prove that the solutions to
the relaxed problem (Pj) are absolutely continuous with respect to H!'[_¥. The
proof is based on the construction of a localized variational problem.

Lemma 5.2. — Let v be an optimal solution for the relazed problem (P) and set
a=L(v). Let § = 8§y x 8§ C R? x R? be a Borel set and define the transport plan

def.

vs = ’YeXCI—SO X 81
along with its marginals
def. def.
pPs = TogYs < PexcL-80, Vs = m1y7s.
Then the measure vg solves the following variational problem

there exists I' such that
Ve My(Z2ul),
Vol HIL (TNY),
YUT € A, V(RY) = vs(R?)

(5.8) inf ¢ WP (ps, ') :

More generally, let (os ) be the constant speed geodesic between ps and vg

defined through og ¢ et T(1-1),78 where (x,y) et (1 = t)xz + ty. Then for any

te0,1]

t € [0,1], the measure vg minimizes the variational problem

there exists I' such that
vV eMi(Zul),
Vo ' L ((TNY),
YUl e A, V/(Rd) = Zlg(Rd)

(5.9) inf ¢ WP (0g.4,0') ¢

Proof. See Appendix A. O
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We now craft a specific set 8§ to apply the lemma. Given § > 0, we define the set
(5.10) Ds < {x € Supp pexc : 6 < dist(z,2) <57},

And for a fixed point yg € X, and J,r > 0 consider the new transport plan
def.

(5.11) Yo.r = Yexc - Ds X Br(yo)
along with its marginals
(512) Ps,r déf’ ﬂOﬁ’Y&,r < Pexc I—D5a Vs,r dg‘ 7T1ﬁ75,r~
From Lemma 5.2 it holds that
there exists I' such that
Ve My(XUT),
V> a tH L (TN YD),
Yur eA, V'(Rd) = 1/(57T(Rd)

(5.13) Vs, € argmin ¢ WP (ps,,v') :

We also introduce
(5.14) ¥s et Yexc L Ds x ¥ and vg def- 1475,

so that by definition, v5, = vsL B,(yo) and vex. can be further decomposed as
Vexe = V5 + Ty (%XC L D§ x ]Rd) . As D;s is a nested sequence of sets, (vs)s>o is a
monotone sequence and taking the limit as § — 0 we have
(515) Vexc = SUp Vs +pexcl—27

6>0
the second limit being pexe L % because of Lemma 5.1 and since the only projection
of a point in X is itself.

In the next Theorem 5.4 we show that the measures vs have a uniformly bounded
density with respect to H'. So when pg is absolutely continuous with respect
to H*, (5.15) shows that any optimal v < H'. The argument consists in crafting a
competitor for the localized problem (5.13), built as a measure supported on a curve
with controlled length, defined over small sphere, centered at an arbitrary point of
the support of vs. Letting the radius of this sphere go to zero, and comparing the
energy of this competitor and the optimal measure, gives a uniform bound on the
density. This strategy is illustrated in Figure 2.

Lemma 5.3. Let By, be the ball on R? centered at the origin. There exists a connected
set Tqg C OBy with H1(I'yq) < 400 and such that

dist(z,Ty) < Jz —y| —1/2
for any x € Bs and for all y € By.

Proof. — We start by covering the sphere 9 By with finitely many balls (31 /Q(xi))fv:‘il,
each having radius 1/2. The number of balls Ny being dependent on the dimension.
In the sequel we define I'y with geodesics on 0By connecting the centers (xl)iv:dl

As we have finitely many points, we will also have finitely many curves and hence
HY(y) must be a dimensional constant. We can even choose the connected set I'y

with minimal length, which is a solution to Steiner’s problem on the spheres and has a
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M =L
Vexc(Br(yo)) S1 M) a <00
T
Ficure 2. Scheme of the proof of Theorem 5.4. For the new competi-
tor, created with the curve I' from Lemma 5.3, we pay a little more in
the transportation cost to generate =13 LT, but pay much less

by projecting the remaining mass onto it.

tree structure, so that we can bound H*(T'y) < (Ng—1)Dg, where Dy is the diameter
of 9By in its Riemannian metric.

To prove the desired property, take © ¢ Bs and y € B;. Let {y} = [z,y] N IBs.
Then § € By /5(x;) for some x; while |z —y| = |z —y| — [y —y| < |z —y| — 1, and it
follows:

dist(z,Tq) < |z — 2| < |z — Y[+ [§ — 2| < [z —y[ - 1/2,

which gives the desired construction. g

Tiurorem 5.4. — Given py € P,(RY), let v be a solution to (Py). Then it holds that
the measures (v5) s, are of the form

7 Cy
2

Vs = 953{1 LE, with ||95HL°°(E,J'C1) < ,C(I/) ’

for Cy =2+ HYTy), Ty being the set from Lemma 5.3.

Therefore, if po < H' or has a L™ density with respect to H*, so does v, in par-
ticular it is a rectifiable measure.

Proof. For yg € ¥, let us define the one-dimensional upper density [3, Def. 2.55]

05(yo) < Jim sup Yo\ or) (Br) .
r—0 2r

We will show that 65(yo) < 2Cq/L(v), so that thanks to [3, Th.2.56], vs < H'L .
Since Y is l-rectifiable, it follows that for H'-a.e. yo € T, 05(yo) is the Radon-
Besicovitch derivative of vs with respect to 7' L_ 3, and the claim of the theorem
follows.

From the optimality of v, the measure vs, solves problem (5.13). In order to build
a competitor we consider the set I'y from Lemma 5.3, choose some point 5 € I'y and
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define
T = [yo, 90 + 7] U (yo + rTa),
which is contained in By, (yo). Notice that X UT,. is always a compact, connected and
1-rectifiable set and one has
FHH(T,) = Car,
where Cy = 1+ H1(T'y) is a constant depending only on the dimension.
In the sequel, setting o = L(v) we define the following parameter

aet. HH(Ty)

= avs(B)’
Suppose that Cy/a < 2605(yp). Then,

def. Cd

1>mg = = lim inf m,..

2a65(yo) 70

Now, we consider a subsequence (ry)reny N\ 0 such that limy_, oo m,, = liminf,_,o m,.
In particular, m,, € (0,1) for r; sufficiently small. For simplicity, in the sequel,
we drop the subscript k, yet we consider only r € {ry}ren.

Let ~r, be an optimal transport plan between m,.ps, and o 'H!' LT, for the
Wasserstein-p distance and define the new plan

~ def. . ~ def. ~

Yoo = . + (L —=my) (id, 7r, )y po,r, and Vs, = T14%s,r,
where 7p, is a measurable selection of the projection operator onto I',.. This construc-
tion is illustrated in Figure 2. Therefore Vs, is admissible for (5.13) and we have the
following estimate:

Wg(pé,r; EE,T) < /

|z — y|Pdyr, + (1 — mr)/ dist(z,I')Pdps,-
Rd xR Rd

We will estimate each term of the previous inequality separately. For the first one,
notice that as suppyr, C Hg' (B, (y0)) X Bar(yo), it holds that:

|z —y| < dist(x,¥) +3r, for yr.-a.e. (z,y).
For the second term, as the projection of = onto ¥ is inside B,(yo), if follows from

Lemma 5.3 that:

dist(z,T';) < dist(z, X) for dist(z, %) > 2r.

r

2 K
Therefore, for a fixed § and taking 2r < §, the Wasserstein distance is bounded by:
I/I/'{f(p(s’r7 Usy) < My /Rd(dist(x, )+ 3r)Pdps, + (1 —m,) /Rd(dist(:r, ¥) —r/2)Pdps.,.

Notice that Wg(p(svr, Vsr) = fRd dist(x, ¥)Pdps,r, so in order to compare the Wasser-
stein distances we use the following inequalities:

(dist(x, X) + 3r)F < dist(x, X)? 4 3rp(dist(z, X) + 3r)P~ 1,
r r

(o5 5 <5~ o))
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which follow from the convexity of ¢ — [¢t|P. Then, given € > 0, if » < de one deduces,
for dist(x,X) > 4, that:

(dist(x, X) + 3r)F < dist(x, £)P 4 3rp(1 + 3¢)P~* dist(z, )P,

(dist(x, ) — g)p < dist(z, )P — gp (1 - g)]%l dist(x, Z)P~ 1.
Therefore it holds that

W (psrs7sr) < Wilpsravos) + o [ dist(a, 27 1dpy,
R

Lo1-m, -1
for Ay = 3m, (1432 = == (172)1’ .

Hence from the optimality of v5, we have A, . > 0, so that letting » — 0 and then
€ — 0, it must hold that 3mg > (1 — mg)/2, that is:
7Cq
05(yo) < 2o
As a result, the family (v5);., has a uniform L°° density bounds, and so does the
limit measure supss (Vs = (Supssq fs) H' L . But as the exceeding measure can be
decomposed as (5.15) we deduce that whenever the initial measure py < H' or has
a L™ density with respect to H!, so does the solution v. O

6. Existence or soLuTions 10 (Py)

This section is dedicated to the proof of Theorem 1.1, item (2). Knowing that the
excess measure is absolutely continuous (Theorem 5.4), we use a blow up argument
near a rectifiability point yg of . From Lemma 5.2, the blow-ups of vey. minimize a
family of functionals (F});~0, which in turn I'-converge to some functional F'. Since
these blow-ups also converge (for H'-a.e. yo) to a uniform density on T}, ¥, this
limit measure must also minimize the I'-limit F'. Yet if it is not zero, we can build
a better competitor (Lemma 6.3 below), giving a contradiction to the minimality of
the uniform measure. We deduce that vey. vanishes.

6.1. BLow-up aND I'-coNVERGENCE. — In the sequel, we assume that py < H*, so that
from Theorem 5.4 any minimizer v, as well as (v5) 4 (defined in (5.14)), are rectifiable
measures and we can write

vs = 0;H L%, for 65 € LY (H'LX).
Observe that vs-a.e. y € X is a rectifiability point, and we choose yy € ¥ such that
(6.1) Ty,X exists  and  yo is a Lebesgue point of 5.

We then use Lemma 5.2 with the choice 89 X 81 = Ds x B,.(yo), and we focus on the

variational problem (5.9): we obtain the families of measures (vs.), ., and (05,),-

as Vs, et vs L B, (yo) and o5 et T(1—r)y Vo, where (0’57,5)t€[0 1 is a family of geodesic
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interpolations, as in Lemma 5.2, so that

there exists I' such that
vV eMi(XUT),
Vo tH L (TNY),
YUl €A, V(RY) = V57T(Rd)

(6.2) Vs, € argmin ¢ WP (o5, V) :

From Lemma 5.1 the optimal transport plan between vs, and o5, is supported on
graph(Ilx).

The sequence of measures v;, are essentially a localization of v5 around yg so,
by the blow-up theorem 2.4 (see also [3, Th.2.83]), it holds that
(6.3) rleY s,

)

Lo 0s(yo)H* L [~7,7], where RT =T, .
r—
Up to a subsequence (not labeled) we also have:

(6.4) R .
r—0

for some measure 5. By construction o, is supported on {ré—! > dist(-, ) > réd},
so that suppas C {z : 6! > dist(z, R7) > 4}.
In view of (6.3) and (6.4), we introduce the blow-ups of the measures vs,. and 0.,

def. 2 — Yo 57~

e 1 r
= @30’ os.r, and the set ¥, = ——— N By(0).
r

def. 1 Yo, —
Q" Vs, Tsp = —
,

(65) v&,r = ;

In addition, we define a family of functionals (F}.), ., as

there exists I' C B1(0) such that
vV eM (X, UT), vV = a tHIL (TN X,),
(6.6) F.(V)) def. Wi (@ V), (Z ; yO) UT closed and connected,
V(B1(0)) = V5(Br(yo)),
400, otherwise, '

where a = L(v). Observing that for any given measures u', " we have:

1 1 1
(6.7) Wé’(; AT - @é’o’ry’) = o7 Wrhu',v').
and recalling (6.2), we see that Ts, € argmin F,. for any r > 0.
The natural candidate for the limit of this family is the following:

there exists I' C B1(0) such that
Ve My ([-7,7]uT),
ar. | WE(@s5,0), Vo 'HL (TN [-7,7]),

R7 UT closed and connected,

V'(B1(0)) = 205(yo),
400, otherwise.
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Cost Cost
- > _—
oy [—7, 7)) V(1)

dac (Br, [=7, 7)) v([—7, 7)) dyc (S, |

Ficure 3. Transportation argument for the construction of a recovery
sequence in the I' convergence of (F.),~o. Both operations have a
transportation cost of the order ds¢ (X,,[—7,7]), and hence converge
to 0.

We prove in Theorem 6.1 below that F, I'-converges to F' as r — 07. We refer
to [9, 6] and in particular to [6, Def. 1.24]) for the definition of the (lower and upper)
[-limit. From the properties of the I'-convergence, see [9, Cor. 7.20], it follows that
05(yo)H! L [—7,7] must be a minimizer of F (as the limit of minimizers of F}.). The
estimate from below of the I'-liminf is obtained with the tools developed so far, while
estimating the I'-limsup will require an appropriate construction illustrated in Fig-
ure 3.

Tueorem 6.1. — The family of functionals (F,.),, I'-converges to F as r — 07,
in the narrow topology.

Proof. — T-liminf: we consider an infinitesimal sequence (7, )nen such that (v},), oy
converges to v’ in the narrow sense in Bq(0), and that liminf, . F, (v) < oo for
all n € N, otherwise there is nothing to prove.

First we look at the first marginals in the definition of F,. . From (6.4) we know

Tn

that s, —~ 7. By the lower semi-continuity of the Wasserstein distance with
n—oo
respect to the narrow convergence, if we prove that F (') < oo, that is, if the limit
satisfies the constraints in the definition of F', we will have
F(/') <liminf F,, (V).
n— oo

As avl, > H'L (T, N Z,.,) for some T, C B1(0) such that 7,1 (X — yo) UL, € A,
Blaschke’s theorem [3, Th.6.1] and Lemma 2.6 imply that, up to a subsequence,

' —2°5 T for some closed set I' C By (0) and 7, (2 — yo) — X ,Rr. Hence,
n— o0 n—o0
e Z - ef.
= (=—2)ur, Kz Rryr.
T n—00

Let us check that = is connected (which is not immediate since the Kuratowski
limit of connected sets is not necessarily connected). Assume by contradiction that
there are two disjoint open sets U, V C R? such that UNZ= and V NZE form a partition
of Z. Since R7 C = is connected, it is contained in either U or V (say, U). As a result,
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VNZE cT C By(0) is bounded, and possibly replacing V' with V' N By(0), we may
assume that V is bounded too, so that 9V is compact. Since = C V N (R? \ V),
we note that 9V NE = &, and we deduce that min,esy dist(z, =) > 0.

Now, the Kuratowski convergence of =, towards = implies that, for all n large
enough, Z,, intersects both V and U C R? \ V, hence, by the connectedness of
Zn, there exists x,, € Z, N JV. But the Kuratowski convergence also implies that
dist(+, 2, ) — dist(+, Z) locally uniformly (hence uniformly on V'), which contradicts
that mingcgy dist(z,ZE) > 0. As a result, = is connected.

The fact that suppr’ C [—7,7] UT comes from the weak convergence of v/, to v/.
As this convergence takes place in a compact set it also holds that »/(B;(0)) =
lim,,—, o0 v/, (B1(0)) = 205(yo) since 05(yo) is the density of vs at yo.

It only remains to verify the density constraints, ar’ > H! L (T'\ [-7,7]). We can-
not apply Gotab’s theorem to v/, since, although av/, > H'L_ (I',, \ 3, ), we do not

have an upper bound on the number of connected components of I',, \ 2, . What
we do know is that the sequence =,, = r;; (X — yo) U T, satisfies the assumptions of
Theorem 2.2, so we apply it to the measures H!L_Z,, instead, remembering that

- P
9{1|_(7?/0)_~_a%25_(1|_( yOUI‘n).
Tn r7l
The left-hand side converges in the local weak-+ sense to 3! _R7 + av’. The right-
hand side (which is bounded by the left-hand side) converges in the same sense, up to a
subsequence. We let A denote a limit and Theorem 2.2 implies that A > H' L (R7UT),
which gives H! L R7 + ar’ > H'L_ (R7 UT), and thus

av' > H L (TN [-1,7]).

[-limsup: Let (r,)nen be an infinitesimal sequence. By Lemma 2.6, we know
that (X — yo)/rn converges in the Kuratowski sense towards Rr, and %, =

(X —yo)/rn N B1(0) converges towards [—7, 7] for the Hausdorff distance.

The strategy to prove the limsup is illustrated in Figure 3, and roughly ex-
plained as follows. We concatenate three steps. First we renormalize ' to satisfy
the mass constraint in F,. . But this normalization may break the condition
avl, > K (T'\ [-7,7]), so we slightly shrink the support to satisfy this constraint
again. We also need the measure v}, to be supported on some connected set ¥, UT,,
hence we move the mass of v/ from [—7, 7] to X, by projection, and we translate the
mass of each connected component of the (shrunk) I' <\ [—7, 7] so that it is connected
to X, . Eventually, by doing so, some parts of the support may get out of B;(0),

so we project the residual mass onto Bj(0).
To be more precise, we first address the case 65(yo) = 0. As F(¢') < 400 if and

only if ' = 0, we need only prove the result for / = 0. Let P, be any measurable
selection of the projection onto X, , and define v}, i 406, With I' = &, and
since |z — P, (x)| < 67! for all z € suppTs,.,, we observe that:

B,
Ee, () S WP (@50, V) < srviBr) F(/).

Tn n—-+o0o
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reover v, v in narrow Wi ve bui recover uen
Moreover, as v/, ——— v/ in the narrow topology, we have built a recovery sequence
T n—+4oo

for v/'.
Now, we deal with the case 05(yo) > 0. Let v/ such that F(v') < +o0, and let T
be a set as in (6.8). Observe that [—7,7] UT is connected, being the projection of

R7UT onto B;(0), and since it has finite H' measure, it is arcwise connected, by [10,
Prop. 30.1, Cor. 30.2]. As a result, Rr UT is arcwise connected too.

Let (C;)ier denote the arcwise connected components of '\ (R7). For each i € I, as
the set RTUT is arcwise connected, one may check that there exists some z; € [—7, 7]
such that {z;} U C; is arcwise connected. As a result, the set C; C R? . (R7) cannot
consist of one single point, and H'(C;) > 0. Therefore, the index set I is at most
countable.

Let us construct a recovery sequence (V) )nen. By the Kuratowski (even Hausdorff)
convergence of ¥, towards [—7, 7], for each i € I, there exists a sequence (2, ;)nen
such that z, ; € ¥, for each n € N, and z,,; — z;. We then define:

def. Vé(Brn)
An = S5 7
2Tn96 (yO)

noting that a, — 1 and s,, — 1, and we introduce the map 7,,,

T ( ) d;ﬂ P’n(y/sn)7 lf Yy € [_7—7 T]a
" (Y = 2:)/sn + 2ng,  ify€Ci

and s, < max(1, a,t),

where, as before, P, is some measurable selection of the projection onto X, . The
map T, shrinks each connected component C; and translates it to the corresponding
Zn,i € X, S0 as to ensure connectedness (see below). Letting Pp denote the projection
onto the unit ball B;(0), we eventually define
def.
v, = (PpoTy)s(a,).

Let us check that v], converges to v/ in the narrow topology. We note that for

ye [77—7 TL
[y/sn — Pa(y/sn)| = dist (y/sn, 2r,) < doc ([-7, 7], %) ——— 0,

n—-+o0o

so that T, (y) — vy, and for y € Cj,
ly = To(y) < [yl (A = 1/sp) + |2i/s5n = 2ni| ——— 0.

n——+oo

As a result, for y € [—7,7]UT, T,,(y) — v, and eventually P o T,,(y) — y. By the
dominated convergence theorem, we get that for any ¢ € Cp(R?),

/ 6dv!, = ay / 6 (Po(Tu(y))) A/ (y) —— 6 (1) 4/ (3)
[=7,7]ul

n—+o0 [=7,7]ul

so that v, e v in the narrow topology.
n—-+0oo

Let us now check the constraints in F). . From the properties of image measures,

we see that supp v/, C By(0), and that v/,(B1(0)) = v/,(R%) = a,v'(R?) = v5(B,,)/Tn,
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so that v/, has the mass prescribed by F,. . Consider the set

(6.9) T, UT,; whereT, ;< (Pgol,)(C)).
i€l

In addition, the mass of v/, is concentrated in ¥, UT,, and we prove below that
satisfies all the constraints in F;. .

First let us show that r;}(3Z — yo) U T, is connected. For each i € I, as the set
{7z} U C; is arcwise connected, so is its image by the map y — (y — 2;)/Sn + 2ns
which is equal to {z,;} UT,(C;). As a result {z,;} UPgoT,(C;) = {zn;} U, is
connected, as well as r,; (X — yo) UT,,.

Let us show that r, (X — yo) U T, is closed. If I is finite, then, by (6.9),
71 (X —yo) UT,, is closed as the finite union of closed sets. Otherwise, I is countable,
and from [28, Lem. 2.6], we have

H (T i) = H(Pp 0 Tn(Ci) < HUTW(Ci)) = 5,7 H'(Ci) —— 0.
Let (1), be a sequence contained in 7,1 (X —yo) UT,, such that x;, — . If there is
an infinite amount of terms of this sequence in either 7,1 (X — yo) or any of the I, ;,
since these sets are closed, then = € 7, 1(X — yo) U T,,. Otherwise, we can find a
sub-sequence s € I'y ;,,, s0 that

- D
dist(a:, yo) = lim dist(xk,, yo) < lim () =0,

Tn k' —oc0 n

and we conclude that r,;1(X — yo) UT,, is closed.
To show it satisfies the density constraints, take any non-negative ¢ € Cj(R?),

o / $dv, = aa, / 6 (Po(To(y))) A/ (3)
[=7,7]ul

> 00,3 [ 0(Pa(T ) a0

i€l

>0, /C B (Pal(y = )0+ 20,0) )

el

a3 [ o Pat) a0

il VIn

> / ddH!.
T'n

It follows that av/, > H! LT, and we conclude that F,. (v,) < oo, for all n € N.

By the continuity of the Wasserstein distance with respect to the narrow conver-
gence (provided the measures are supported in some common compact set), we have
that:

F,. (v.) —— F(/).

n—oo

The I'-convergence follows. |
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Now that we have characterized the limit problem, we show that the optimal trans-
portation is given by projections as the blow-up family.

Lemma 6.2. If 05(yo) > 0, the optimal transport plan between the measure os,
defined in (6.4), and 7 = 05(yo)H' L_[—7,7], defined in (6.3), is unique and given by
the projection map II_. ;1.

Proof. Consider a family 7, of optimal transport plans from o5, to 7s,. Up to a
subsequence it converges to some 7, which, by the stability of optimal transport plans,

also transports o5 to 7 optimally. Since &5 ,, 75, are generated by the pushforward of
Vexe L By (yo) by @Y7, from Lemma 5.1 we know that

supp?, C graph(lly, ).
Let us show that supp?¥y C graph (H[_T,T]). Indeed if (z,p) € supp?, there is an
open ball B centered at (z,p) such that

~(B) < liminf= '
0 <7¥(B) < lim inf ¥, (B)

In particular, we can find supp7, > (z, p:) — (z,p). So it holds that

r—r
ol ol = lim di _ s _
|z — p| }1_% |z — prl lim dist (z,, 3,) = dist(z, [—7, 7]),

where the last equality comes from the uniform convergence of the distance functions,
recalling from Lemma 2.6 that X, d—gfo> [—7,7].
r—

Now we show that this property is true for any other optimal plan. Consider y
transporting o5 to ¥ optimally, then by the optimality of 7 it holds that

/Rd(dist(:ﬂ, [—7,7]))Pdos = / |z — y[Pdy = / o — ylPdy
> / (dist(z, [-7,7]))Pdy = /

dist(z, [, 7])Pdos.
Rd
Since |z — y| — dist(x, [-7,7]) = 0 for v-a.e. (z,y) and the inequality above must be
an equality, we must have suppy C graph (H[_T)T]) for any optimal . In particular,
as II[_; ;) is uni-valued, it means that the optimal transport plan is unique and given

by the projection map. O

6.2. COMPETITOR FOR THE LIMIT PROBLEM AND EXISTENCE FOR (Py). Given yo € ¥
such that (6.1) holds, it follows from Theorem 6.1 that:
Vs < 05(yo)H' L [~7,7] € argmin F,

where F' is defined in (6.8). In addition, Lemma 6.2 shows that if 05(yo) > 0, the
optimal transportation of 5 to 75 is given by the orthogonal projection. We show
that in this case, we can lower the energy by projecting part of the mass to a (closer)
horizontal line as in Figure 4. This contradicts the existence of rectifiability points
of ¥ such that 65(yo) > 0 so that v5 = 0, and shows the following lemma:

Lemma 6.3. For any 6 > 0, the measures vs defined in (5.14) vanish.
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Ficure 4. Construction of a competitor for the minimization of F'.

Proof. — Up to a rotation, we may assume that 7 = eq, where (e;)% is a basis
of R%. Since 75 is supported on {z = (2/,z4) € R? : |2/| > 6, |zq| < 1}, we can cover
its support with finitely many sets (E;)Y.; defined as:
def.
E, = {o=(d,2q) € RY: (&, x) > 6/2, |xq| < 1},
where & € S9! N [eq]t are “horizontal” unit vectors and N depends only on the
dimension. We then define a disjoint family
;
F1:E17 Fi+1:Ei+1\ U Fj fOI’L>1
j=1
and decompose our measures g5 and Us as
N N
— — — — — def. _ — def. O
Ts = ZU‘”’ Us = Z Usi, whereos; = 05l F; and Us; = Projqy0s,i,
i=1 i=1
with proj, : * — zg4eq the projection onto the vertical axis. By Radon-Besicovitch’s
differentiation theorem, vs; = 0, H' L [—eq, eq], where 0;(s) = 0;(seq) > 0 are such
that

N
> 0; = 0s(yo).
i=1

Consider 5 € (—1,1) a common Lebesgue point of all §;, ¢ = 1,...,N. Let 4
be the index for which 6;(5) is maximal: then 60;(3) > 05(yo)/N. Up to a change
of horizontal coordinates, we assume that £ = e;, and we introduce the notation:

JE.P. — M., 2095, tome 12



134 A. CiamBorrk, V. Duvar & J. M. Macnabo

R >z = (z1,2",24) for 2" € R4™2. Let now:

def.

C. =
We obtain, from the fact that (proj,),7s; = 0:3" L [~eq, 4], that

G5i(Ce) 1 /SJrs act. , — — 05(vo)
_— = — : —_— = 0. > —=.
9¢ 52 0;(t)dt 0 0;(3) > N

En{zeR: |zg—3 <e} C{z=(21,2",2q) : 71 > 6/2, |zqg—3| <e}.

S—e e—0
Now, assume by contradiction that 6 > 0. If € is small enough, we have:
(6.10) 0 < % < 3.

for all &’ < e.

Let us exploit the fact that, from Lemma 6.2, the optimal transport is given by
projections to propose a new transport map, sending the mass in C; to a segment
pointing towards e;:

aef. | L(Jxq —5|)er +Seq if z € Cg,
Y {projd(x) otherwise,
where £ : [0,e] — Ry is defined via the conservation of mass relation, for 0 < &’ < e:
(6.11) U(e") = a5, (Cor).

In other words, the mass that was sent to the vertical segment [s—¢’, 5+ ¢’]eq is now
sent to the horizontal segment seq + [0, £(¢')]e1, for each & € [0,¢]. This construction
is illustrated in Figure 4.

Thanks to (6.11), the map T sends 75, L C: to the measure a YKL L where

L Seq + [0,4(¢)]e1, hence, the transported measure Ty satisfies the constraints

in the definition (6.8) of the limiting functional F' and one has F'(T}7s) < +0c.
We shall now see that for each point x € C. with x4 # 3, it holds that

(6.12) |z — proj ()| > | — T(x)|P.
To show (6.12), recalling the notation @ = (z1, 2", z4), it suffices that
| — projq(«)|* > |z—T(x)|?
= ai+ 2" > (@1 — lza —5))° + |2 + (za = 5)°
= 201l(|xg —3|) > €(|zg — 3])% + (vq — 3)%

In addition to (6.10), we choose € in such a way that for any = € C. we have
1 -1
f|z4 — 5| < (|7a — 5]) = 0T 4(Clu,—s)) < 3abz < (1 + (QT)Q) 5
and hence

Uleg )7 + (o~ 57 < (14 @)6(\3@ ~ )2 < 60(|za — 3]) < 2216(|74 — 31),

for all x € C¢, with x4 # 3, so that (6.12) holds. Since 6 = 0,(35) > 0, it follows that
F(Tu?g) = WI?(E(;, Tﬁ?g) < Wf(?g,ﬁg) = F(P(;).
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This contradicts the fact that s (yo)H! L [—eq, eq] is a minimizer of F, showing that
we must have 6 = 0,(3) = 0 and, in turn, 65(yo) = 0. As this holds for H!-a.e. point
Yo € X, we deduce that v5 = 0. O

The previous lemma, combined with the characterization of solutions, as in (5.15),
v=a 'H' LY 4 supvs + pexc %,
>0

proves the following result, showing in particular point (2) of Theorem 1.1.

Trurorem 6.4. — Let pg € P,(R?) and suppose that the parameter A < A,. Then the
solution to the relazed problem (Py) is of the form

v=LW) T TH LS + pexe L%,

where pexe was defined in (5.4). In addition, if po does not give mass to 1-rectifiable
sets, any solution of the relaxed problem (Py) corresponds to a solution of the original
shape optimization problem (Py).

7. AHLFORS REGULARITY

In this section we prove that whenever the initial measure py € LY (=1 (R%), the
optimal solutions to the relaxed problem (P,) have an Ahlfors regular support.

DeriNirion 7.1, We say that a set ¥ C R is Ahlfors reqular whenever there exist
ro > 0 and ¢, C' > 0 such that for r < rg it holds that

or <H(ZN B, (x)) <Cr, forall z € 3.
We prove in this section the following result.

Turorem 7.2, — If pg € LY4=1D(RY), let v be a solution of the relaxed problem (P))
and ¥ its support. Then X is Ahlfors-regular: there exist 7o > 0 and C > 0 such that,
forallz € ¥ and r < T,

r < HYE N B.(T)) < COr.
Moreover, Ty depends only on d, p, pg and o et L(v), while C depends only on d and p.

The lower bound (with ¢ =1 and rp = diam ¥) follows directly from the connect-
edness of ¥. The upper bound will follow as a corollary of Lemma 7.3 below. Let us
describe the strategy for proving this estimate. We point out that the construction in
this section, although different, follows similar steps as the proof of Ahlfors’ regularity
in [27, Lem. 6.1, Th. 6.4].

The idea is similar to proving the L> bound on the excess measure: if in a small
ball B,.(T) the measure v has too much mass, we build another “closer” 1D structure
onto which the mass is transferred at a smaller cost.

Yet there is an additional difficulty: when replacing ¥ N B,.(Z) with another set we
must preserve the connectedness. The proof of Theorem 5.4, required to rearrange
only the excess mass and this was not an issue. We now need to control the number
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of connected components of ¥\ B,(T) and connect them back without adding too
much length. This number of connected components is controlled by the quantity
H(X N OB, (%)), which we can control on average by means of the generalized area
formula [3, Th.2.91]: If f : RM — RY is a Lipschitz function and E C RM is a
k-rectifiable set then it holds that
(r1) HEN 1 ) () = [ DB aset (),

RN E
where dF f, is the restriction of V f(z) (when f is smooth) to the approximate tangent
space of E. Hence, choosing E = XN (B, (T)\ B,,(T)) and f : x — |z —T|, we deduce
from (7.1) that

T1
(7.2) / HO(XNOB,(T))ds < HY(E N B, (T)) — HY (X N B, (T)).
T2
Using this we first prove the following lemma:

7.3. — Assume py € L¥@=)(RY). There exist C(d,p) > 0 and ro depending
on po, o, d, p, such that for any C > C, if r < ry and x € X, then

either HY (XN B,.(x)) < Cr or HY(X N By.(x)) > 10CT.

LEMMA

Proof. — Let r > 0and C > 1, and let T € X be such that
(7.3) H(ENB,(T)) >Cr and H (TN By (T)) < 10CT.

We show that if » < rg and C > C, which will both be chosen later, then we can
construct a better competitor to the minimizer v.

The function f : s — H'(X N Bs(Z)) is nondecreasing, hence in BV (R,) and
satisfies, thanks to (7.2), that H°(X N dBs(T))ds < Df in the sense of measures
(equivalently, H?(X N OB,(T)) is less than, or equal to f’(s)ds, the absolutely contin-
uous part of Df).

We note that

ds

, sHO (X N OB, (T)) 2 [?" sHO (S NOB,(T))
we@h o) ( H(E N B, (7)) ) S /3 12 H(ZN B, (7))

2r 1 ,
S 4/3”2 ! (2)ds

< 4ln( f(2r) )
f3r/2)
where we have used the classical chain rule at almost every point and [3, Cor. 3.29].

Since f(2r)/f(3r/2) < (10Cr)/(Cr) = 10, we deduce that there exists 5 € (3r/2,2r)
such that

< -
r

1
41ln10°

(7.4) 05H'(E N OBs(Z)) < H' (T N Bs(Z)), where § <
Now, we let

(7.5) M =2(1+10-(40/17)P"1)
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(this choice will be made clear at the end of this proof) and we consider

det. O = 1
(7.6) 5_W<6<§'

We define a set T' as follows: we choose a finite covering of 0B;(0) with balls
B(w;,6/2) centered at points (z;)}, (the minimal number N depends only on d
and p, through §). Then, we find a minimal tree connecting the points (z;)¥; through
geodesics on the sphere. We add to this minimal tree the segments [z;, (1 + §)z;],
i=1,...,N. We call T the resulting (connected) set, whose total length L et HYT)
is of order at most 2N ¢ and depends only on d and p. Notice that each point of 0B
is at distance at most d, along the geodesic curve on the sphere, to a point of I', and
that thanks to the “spikes” [z;, (1 4 0)x;], any point with, say, |z| > 10 is closer to a
point of T’ than from any point in B;(0).

Now, we define
def.

's=Z+s)u U Sa,
T€TNIBs
where S, denotes a geodesic connecting = to T + 3T, of length at most H!(S,) < 3.
Since 5 < 2r and 0 < 1/2, it follows that I's C B, (T). We define the competitor set
as
> %\ Bs(z) UTs.

The addition of the geodesics S, ensures that ¥’ remains connected, and using (7.4),
we estimate the length of I's as

3 (Ts) < L5 + 653 (£ N OBs(7)) < 2Lr + 1573 (£ 1 By (@)

@.7) < (2L + C/M)r,

where we have used (7.3) in the last estimate. Now we define a new competitor v/
whose support is ¥'. If v denotes an optimal transport plan from pg to v, given s > 0
let
def.

Ps = Toy (’}/L(Rd X BS))
denote the portion of the measure pg which is transported to the ball B;. In particular,
the above length estimates imply that
(7.8) Lr < H'(T5) < 2L+ C/M)r < (2L/C +1/M)av(B,) < ap,(RY) < aps(R?),

where a ‘L £(v), and using that M > 2 (see (7.5)) and assuming C > 4L (which
we recall depends only on d and p). But, if r is small enough (not depending on T,

by uniform equi-integrability of pg/ (d_l)) Holder’s inequality implies that
(7.9) aps(Bior(T)) < allpoll Lasa-1 (B0, ) | Bror (@) < Lr.

We fix 79 > 0, which depends only on the dimension (through L), the integrability of
po, and «, such that the above inequality holds for r < rq.

Equations (7.8)—(7.9) show that for  small enough, part of the mass transported
to v L Bz must come from outside of the ball Byg,. In particular, since ¢t — pg(B:(T))
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is continuous, there is R > 10r such that
(7.10) ps(Br(T)) = a3 (Ts).

To form the new competitor we proceed as follows: the mass sent to ¥ \ Bg
remains untouched, the mass pzl_ By previously used to form v L. Bz is transported
to o 'H' LTy and the remaining mass is projected onto I's.

So, letting 7 an optimal transport plan between ps L B and o~ 'JH! L_T's, we define
the plan

v = yLRY x Bs(Z)¢ + 7L Br x R? + (id, 7r_ )4 (ps L B%),
and the new competitor / as its second marginal. By construction, o’ > H'L_ ¥/
so that £(v') < £L(v). We now estimate the gain in terms of transportation cost.

« For (x,y) € Br x Bz and for any y' € I's C Bs,, as 5 < 2r and 10r < R, the
convexity of t — tP yields

e =y [P < (Je —y| +5r)" < |z —y|? +5rp (|2 — y| + 5r)"
<z —y” +5rp(2R)P".

Hence integrating with respect to the transport plans we get
/ o —y'IPdy < / | = y|Pdy + 5rp (2R)" ™" ps(Br),
BR><1"g BRXBg

(this can be checked by disintegration with respect to their common first marginal,
which is the measure pzL_ Bp).
« Similarly, for z € B}, and y € Bz \ B, the addition of the spikes ensures that

|z — 7 ()] < |z —yl.
However if x € B and y € B, it holds that
r
| —mro(2)| < |z —y[ = 5 and |z —y[ > R -,
so that once again using the convexity of ¢ — tP we have

T\P r r\p—1
o=@ < (lo =yl = 2) <le =yl —p% (lo =9l - 1)

r 17 NP1
<l|z—ylP —p= (—R) .
o =yl =p5(5;
So, decomposing the integration for the points going to B, and to Bz \ B,., this time

the transportation cost can be bound by:

[ e-m@Pap= [ o= m@Pdios =)+ [ o= mr@lPdp,
B

& B, B,
r /17 \p—1

< / o~ ylrdy 5 (55R)" pr(BR).

B¢, X Brr

We get:
Lo r)" o (BR).

WE(po.v') < WE(po,v) +5rp (2R ps (Br) = p 5 (55
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As L(v') < L(v), the optimality of v gives that W) (po,v) < W} (po, V'), which, along
with the previous estimates, implies

0<5-2"ps (Br) — = (17/20)" "' p, (BE) < p (Bg) < 10-(40/17)"" ps(Bg).

!
2

On the other hand, since

pr (Br(T)%) = v(B,(T)) — pr(Br(T)) > o~ Cr — p,(Br(@)) > o' Cr — ps(Br(T)),

and recalling (7.7) and (7.10), we deduce:

C < (1+10-(40/17)P~1) (2L + C/M).

We conclude that with the choice (7.5) of M, one has C < 2M L, which depends only
on p and d and a contradiction follows if we choose C' =1+ 2ML. O

Proofof Theorem 7.2. — Consider C, ry from Lemma 7.3. Fix z € ¥ and assume
there is r € (0,79) such that H(X N B,(z)) > Cr. Then the thesis of the lemma
applies and it must hold that H!(X N Ba,.(z)) > 10Cr. By induction, we find that for
k > 1, one of the following holds:

. either 2Fr > rg;

. or we apply the lemma again (with C’ = 5¥C and r’ = 2*r), using that

HY(Z N Bok, () > 57C(2%r),
and we get
HY(E N Borrr,(z)) > 5FFIC (25 ).
Let £ > 1 be the first integer such that 2kp > ro, SO that 2k=1p <y and
58C(2%r) < HY(Z N By, (2)).

Hence, ro < 2Fr < 5_’“6_1%1(2) and it holds that k < ko logs (H!(X)/Cro), and

_ _ def. _
r > 7192 k;ro =72 ko

This shows that, if r < rg is such that 5! (XN B,.(z)) > Cr, then r > 7. As a result,
for every r < 7y and every x € ¥, we have H'(X N B,.(z)) < Cr. O

Remark 7.4. It is interesting to observe here that the regularity constant C' depends
only on d and p, while the scale Ty at which the Ahlfors-regularity holds gets smaller
as po gets more singular or when « (or H!(X)) increases (which is when A decreases).

8. ConcLusioN

In this paper we have proposed a new variational problem, which serves as a method
for approximating a probability measure with a measure uniformly distributed over
a one-dimensional continuum. In order to prove existence, we have passed through
a relaxed problem and the definition of a new functional on the space of probability
measures, the length functional, that generalizes the notion of length of the support
of a measure. As a tool for our analysis we have also generalized Golagb’s theorem to
the case of a sequence of possibly unbounded sets converging in the Kuratowski sense.
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We then have shown that solutions of the relaxed problems are, in fact, solutions to
the original one whenever the original measure does not give mass to 1-rectifiable sets
of R%. We also have proved an elementary regularity properties of the optimal sets,
in the form of an Ahlfors regularity estimate.

There are still many open questions left, such as:

« Does the support of minimizers have loops or are they trees?

« What is the regularity of the optimal 37 Can we adapt the theory in [25] and
conclude they are locally C*® curves?

« If vy is a solution to (P, ), what is the rate of convergence of v A;—M)\ 0o?

« The blow-up analysis in Section 6 is very similar to the arguments in [31] for
the blow-up of average distance minimizers. However, the argument is applied to the
excess measure and not to the entire solution. Can we use similar tools to study the
blow-ups of the optimal networks in our problem as well?

« What are the Euler-Lagrange equations of (P,)?

« Could we find (efficient) numerical algorithms to solve this problem?

Some progress has been made on a few of these questions: for instance in [21], it is
proved in a simplified setting (when pg is a finite sum of Dirac masses) that the
solution is supported on a tree; in [22], a phase-field approach is suggested to approx-
imate Problem (P,), which could lead to (still complicated) numerical methods and
simulations.

AprPENDIX A. LLOCALIZED VARIATIONAL PROBLEM

In this section, we prove Lemma 5.2, which states that the optimality of v implies
that the exceeding measure vey, or a slight modification of it, must satisfy a localized
optimization problem. Before proceeding we review the notation introduced in the
statement of the lemma. Given an optimal transportation plan « between pg and the
minimizer v, we recall the definition of vy in (5.3) and we fix a general Borel set
8 = 8y X 87 to define

def.

Vs = Yexcl-80 X 81
along with its marginals
ps = ToyVs Vs e T1478,
Proofof Lemma.2. — First, we fix some arbitrary I" such that SUT" € A. We consider
measures v/ € M, (S UT) such that v/(RY) = vg(R?) and v/ > o !H L (T \ %), and
we build competitors to v of the form v — vg 4+ v/. Such measures are supported over
YUl' € A and
v—vs+v =vsa + (Vexe — vs) + V'
>a ' LY o ' H L (TNE) > a 'K L (ZUD),
so that £L(v —vs + V') < a = L(v). By optimality of v, we deduce that
WE(po,v) < WE(po,v —vs +v').
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Given any transport plan 4 from pg to v/, v —vs ++' is a transport plan from pg
to v — vg + v/ and it follows, from the optimality of v and ~:

/Ix—ylpd(v—’ys)Jr/\x—y\pdvs =/|x—y|pdv</\w—y\pd(v—vs)Jr/Ix—ylpdvﬂ
so that:
(A1) [1o=vpars < [1a -y,

Observe that in case v/ = vg (and T' = @), we find that g is an optimal plan. In par-
ticular the left-hand side of this equation is W} (ps,vs). Since the same argument
applies to v — 75, we observe that:

(A.2) W2 (po,v) =W} (po — ps,v —vs) + Wi(ps,vs).

Considering an optimal transport plan 4’ in (A.1), we get in addition that
WP (ps,vs) < WP (ps,v') for all the admissible variations 1’ of the excess measure.

As ~g is an optimal transportation plan between ps and vg, from [30, Th. 5.27] one
can define a constant speed geodesic between such measures as

def. def.
o5 L w0, where m(o,y) (1 Ha + ty.

Hence for any variation v/, admissible in the sense of the previous problem, and

for any t € [0, 1], it holds that

Wy (ps,0s.t) + Wy (0s,1,v5) = Wy (ps, vs) < Wy (ps, V')
< WP (p57 O'S’t) + Wp(US,t, V/)a

where the equality comes from general properties of constant speed geodesics in met-
ric spaces, while the inequalities come from the minimality of vg and the triangle
inequality, respectively. We conclude that in fact, the measure vg also minimizes the
Wasserstein distance to any measure os; along the geodesic. O

ArrenDIX B. KURATOWSKI CONVERGENCE AND (GOLAB’S THEOREM

In this appendix we give a proof of Lemma 2.1. We then give a simple proof of the
local version of Golab’s, Theorem 2.2. We use the notation Bg = {z : |z| < R} and
Br = {z:|z| < R}.

Proofof Lemma 2.1. Notice that, up to a translation, it suffices to prove the result
for £y = 0. We can also assume that C' # &, otherwise for any R > 0, C,, N Bg = @
for n large enough and the result holds. Defining Ry = inf{R > 0 : C N B # 2},
we have that if R < Ry, one has C,, N Bg = @ for n large enough and the Hausdorff
limit is empty, as expected.

Now we take R > Ry and consider a subsequence (Cy, ), oy and a closed set CF
such that

an QER dL CR,

n—00
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Since C,, N Br C Cp,, it holds that C* C C. On the other hand, given z € C'N Bg,
if there exists z,, € C,, N B with z, — x, then z € C®. Therefore
CNBrCC®cCNBg

and to finish the proof it suffices to show that there is a countable set I C [Rg, +00)
such that if R¢ I, R > Ry, then C N Bgr = C'N Bp.

Let £ € B; and consider the function R + dist(R¢,C N Bg). If R > R’ > Ry,
it holds that

dist(R¢,C N Br) < dist(R'¢,CNBr)+R—R'.
Indeed, let zr/ be the point minimizing the distance from R’¢ to C N B/, then
dlSt(REa cn ER) < d(Rga QJ‘R/) < d(REa R/E) + d(nga QJ‘R/)
=dist(R'¢,CNBr)+ R—R.
Hence the function ¢ : R + dist(RE, CNBR)—R, is nonincreasing in [Ry, +00) and

in particular it has at most a countable number of discontinuity points. In addition,
given &,&' € OBy, it holds that

lpe(R) — pe(R)| = | inf d(xz, R¢) — inf d(w, RE')

rEBR rEBR
< sup |d($,R€) *d(.fC,Rfl)l < R|§*£l‘
2€BR

Therefore if R is a point of discontinuity for ¢¢, then for all £ in a neighborhood of &,
R is a point of discontinuity for ¢/.

Let (£,)nen be a dense sequence in 9By . For each n we can find a countable subset
I, C [Ry,+00), such that ¢ is continuous at any R € (Ry,+0o0) \ I,. Finally,
we define the countable set I as I = J,,cy In-

If R & I, then either R < Ry and CNBr = CNBgr = @, or R > Ry. In that
case, for any ¢ € 0B, p¢ is continuous. Otherwise, there would be some &,, close
enough to &, such that ¢ is discontinuous, a contradiction. In particular, whenever
x = R{ € C' the continuity of ¢¢ implies that

lim diSt(R/f, C HER/) =0.

R'TR
Hence take R, T R, set &, = dist(R,&,C N Bg,) and let z,, € C N By, be a vector
attaining this distance. As z,, € CNBg and |z —z,| < e, + R— Ry, ©, converges to x,
and x € C'N Bg. It follows that (C N Bg) ~ C N B = @, completing the proof. [

Proofof Theorem 2.2. — We will show that u(X N B.(y)) = HY(X N B.(yo)) for
H'-a.e. yo € ¥ and for r > 0 small enough. This implies that ©1(u,y0) > 1, and
the result follows by integrating. Assume that ¥ is not a singleton, otherwise there is
nothing to prove. Since a compact and connected set with finite length is path-wise
connected, see [10, Prop.30.1 & Cor. 30.2] and [1, Th. 4.4], for any yo € X, for r > 0
small enough ¥ N BE(yg) # @ and there is a path connecting yo to the boundary
0B, (yo) of length at least r. From the Kuratowski convergence, for n large enough,

each set X, has a point inside and another outside the ball B,.(yo).
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We start by fixing some 0 < ¢ < r and looking at the smaller ball B,_s(yo).
Consider the following class

A, &t {*y connected component of 3, N B,.(yo) which intersects Br_g(yo)}.

Each v € A,, must be such that H*(y) > §. Indeed, as for each n € N there is a point
in ¥, N B,-(yo)¢ and another in yNIB,_s(yo), the connectivity implies v is contained
in an arc joining these two points, but then it must have length at least d, as it is the
smallest distance between the two balls. So define

S def.
En = U ’yv
YEAR

which is a bounded sequence of closed sets, but not necessarily connected. However
this sequence has a uniformly bounded number of connected components since

Ly B
oA, < Z H(y) < HY(Z,, N Br(zo)), hence #A,, < sup H (20 0 Br(yo)) < 400,

~EA, neN o

for R > 0 large enough.
As ¥, is a bounded sequence, by Blaschke’s theorem we can assume up to an
extraction that 3, BEINS SHS N fact, for a.e. 0 < § < r, using Lemma 2.1, it holds
n—roo
that

(B.1) SN Br_s(yo) = % N Br_s(yo),

since by the construction, f)n N B,_s(yo) = X, N Br_s5(yo) and choosing ¢ such that
K
En N Brfﬁ(y()) m} XN Br75(y0)'

This way, we can apply the global version of Golab’s theorem with a uniformly

bounded number of connected components to the sequence in N By_s(yo) so that we
write
11(B,(yo)) = limsup 3" (£, N By (yo)) > limsup H* ()
n—oo n—oo

> liminf HY (S, N B_s)

:}Cl(i N Br75(y0)) = :}Cl (2 N Brfé(yO))

=
> 3N (XN Brs5(y0)),

where the first inequality is due to the local weak-+x convergence of the measures and
the forth is given by Golab’s theorem. But as this estimate is true for any § > 0, it
must hold that (Br(yo)) > H' (BN B,(yo)) for any 3o € ¥ and r > 0. To extend
this to open balls as well we use the following estimates

w(B,) = nli_)rr;ou (Br—1/n) = nli_)rréo H' (ENB,_1/n) =H (ZNB,). O
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