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ONE-DIMENSIONAL APPROXIMATION OF MEASURES IN

WASSERSTEIN DISTANCE

by Antonin Chambolle, Vincent Duval
& João Miguel Machado

Abstract. — We propose a variational approach to approximate measures with measures uni-
formly distributed over a 1-dimensional set. The problem consists in minimizing a Wasserstein
distance as a data term with a regularization given by the length of the support. As it is chal-
lenging to prove existence of solutions to this problem, we propose a relaxed formulation, which
always admits a solution. In the sequel we show that, under some assumption on the original
measure, a solution to the relaxed problem is a solution to the original one. Finally we prove
that, whenever the original measure has a density in Ld/(d−1)(Rd), any optimal solution is
supported by an Ahlfors regular set.

Résumé (Approximation unidimensionnelle de mesures au sens de la distance de Wasserstein)
Nous proposons une méthode variationnelle pour approcher des mesures par des mesures

distribuées uniformément sur un ensemble de dimension 1. Le problème consiste à minimiser
un terme de fidélité donné par la distance de Wasserstein, plus un terme régularisation donné
par la longueur du support. Puisque que l’existence de solutions pour ce problème semble
difficile à démontrer directement, nous introduisons une formulation relaxée qui admet toujours
une solution. Nous montrons alors que, sous certaines hypothèses sur la mesure originale, les
solutions du problème relaxé sont bien des solutions du problème original. Enfin, nous montrons
que, si la mesure originale a une densité dans Ld/(d−1)(Rd), le support de toute solution est
Ahlfors-régulier.
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1. Introduction

In this paper we study the following 1-dimensional (1D) shape optimization prob-
lem: given a reference probability measure ρ0 ∈ Pp(Rd) (the set of Borel probability
measures ρ with

∫
Rd |x|pdρ < +∞, p ⩾ 1), we seek to approximate ρ0 with measures

uniformly supported on a one-dimensional connected subset of Rd. This approxima-
tion is done by means of the following variational problem

(PΛ) inf
Σ∈A

W p
p (ρ0, νΣ) + ΛH1(Σ),

where the measure νΣ is defined as

(1.1) νΣ
def.
=

1

H1(Σ)
H1 Σ, for Σ ∈ A

def.
=

{
Σ ⊂ Rd :

0 < H1(Σ) < +∞
compact, connected

}
,

and H1 denotes the 1-dimensional Hausdorff measure in Rd. The term Wp denotes
the usual Wasserstein distance on the space of probability measures (see [30, 32] and
Section 2.1.3).

One can trace the idea of approximating a probability measure by a 1D set back
to the concept of principal curves from the seminal paper [16], which extends linear
regression to regression using general curves, and introduces a variational problem to
define such curves. In this variational sense, a principal curve minimizes the expecta-
tion of the distance to the curve, with respect to a probability measure describing a
data set (with some regularization to ensure existence). As proposed in [17], a length
constraint is a simple and intrinsic way to ensure existence. The properties of such
minimizers have been studied in detail in e.g. [20, 12].

A further generalization consists in replacing the curve with a more general one-
dimensional compact and connected set, yielding the average distance minimizer prob-
lem introduced in [7], and its dual counterpart maximum distance minimizer prob-
lem [27, 19]. Such problems were conceived for applications in urban planning, where
one seeks to minimize the average distance to a transportation network, giving rise
to the need for a larger class of 1D sets allowing for bifurcations.

While the above-mentioned problems only focus on some geometric approximation
of the support of the measure, approximating a measure in the sense of weak con-
vergence is sometimes more desirable. In [18, 8], the authors have proposed optimal
transport based methods for the projection of probability measures onto classes of
measures supported on simple curves, using the Wasserstein distance as a data term.
Potential applications range from 3D printing to image compression and reconstruc-
tion. In [13], the data fidelity term is chosen to be a discrepancy, see also [26]. The
advantage of using discrepancies is that approximation rates can be given indepen-
dently from the dimension, being therefore a good alternative to overcome the curse
of dimensionality. The problem we study is an attempt to generalize this class of
problems to the approximation with one-dimensional connected sets.

One difficulty when studying (PΛ) is that the class of measures νΣ is not closed in
the usual weak topologies considered for the space of probability measures. While a
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One-dimensional approximation of measures in Wasserstein distance 103

Σn
dH−−−−→

n→∞
Σ

H1 Σn
⋆−−−−⇀

n→∞
2H1 Σ + δx0

1/n

Figure 1. Concentration effects for the weak convergence of mea-
sures. Here Σn is made of two lines getting closer and a spiral con-
verging to a point. In the Hausdorff limit we obtain a segment with
shorter length, and a singular limiting measure.

sequence of sets (Σn)n∈N in A with uniformly bounded length will have subsequences
converging (in the Hausdorff sense) either to a point or a set in A, the correspond-
ing measures νΣn

might converge to a measure which is not necessarily uniform on
that set: longer parts of Σn might concentrate in the limit on shorter parts of Σ,
see Figure 1.

Hence, minimizing sequences converge in general to a measure which is not of the
form νΣ, and we need to determine a relaxation of our energy in a topology for which
the Wasserstein distance is lower semi-continuous, such as the narrow convergence.
The relaxed energy takes the form

(PΛ) inf
ν∈Pp(Rd)

W p
p (ρ0, ν) + ΛL(ν),

where the length functional L, defined in Section 3.1, generalizes the notion of length
of the support of a measure, see for instance Example 3.6. We will show later on,
in Proposition 3.8, that L is the lower semi-continuous relaxation, for the narrow
topology, of the functional ℓ given by H1(Σ) for measures of the form νΣ, and +∞
else, see (3.1). We also find that L(ν) < ∞ if and only if supp ν ∈ A or ν is a Dirac
mass. The following theorem gathers the various results proved throughout this paper.

Theorem 1.1. — Let ρ0 ∈ Pp(Rd), Λ > 0. Then (PΛ) admits a solution ν, and there
exists Λ⋆ ⩾ 0 such that if Λ > Λ⋆, ν is a Dirac mass. For Λ < Λ⋆, ν is supported by
a set Σ ∈ A and the following properties hold.

(1) If ρ0 is absolutely continuous with respect to H1, or has a L∞ density with
respect to H1, then so does ν.

(2) If ρ0 does not give mass to 1D-rectifiable sets, then ν = νΣ and therefore is a
solution to the original problem (PΛ).

(3) If ρ0 ∈ Ld/(d−1)(Rd), then Σ is Ahlfors regular, i.e., there is r0 depending on
d, p, ρ0 and L(ν) and C depending only on d, p such that for any x ∈ Σ and r ⩽ r0 it
holds that

r ⩽ H1(Σ ∩Br(x)) ⩽ Cr.

The paper is organized as follows: in Section 2 we recall a few tools from optimal
transport and geometric measure theory. Next, in Section 3 we go through the defi-
nition of the length functional and its properties as well as the relaxed problem and
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104 A. Chambolle, V. Duval & J. M. Machado

the existence of a solution. In Section 4 we discuss the existence of Λ⋆. In Section 5
(Theorem 5.4) we prove point (1) from Theorem 1.1, while the existence is proved in
Section 6 (Theorem 6.4), and the Ahlfors regularity is studied in Section 7.

2. Preliminaries

We start by introducing notions of convergence for sets and measures which will be
useful to study problem (PΛ) as well as the relaxed one (PΛ). Next we describe some
instrumental properties of the objects we shall use throughout the paper, namely the
rectifiable sets and measures.

2.1. Convergence of sets and measures

2.1.1. Hausdorff and Kuratowski convergence. — We recall some useful definitions of
convergence for sets, see for instance [29, Chap. 4], [3, Chap. 6].

The Hausdorff distance between two sets A, B is defined as:

(2.1) dH(A,B)
def.
= max

{
supa∈A dist(a,B), supb∈B dist(b, A)

}
,

where dist(·, A) denotes the distance function to the set A. A sequence (An)n∈N of
closed subsets of Rd converges in the Hausdorff sense to A if limn→∞ dH(An, A) = 0,
and we write An

dH−−−−→
n→∞

A. One can prove that this notion of convergence is equivalent
to uniform convergence of the distance functions. Since the latter are 1-Lipschitz, as a
consequence of Arzelà-Ascoli’s theorem it follows that if the sequence is contained in
a compact set, one can always extract a convergent subsequence. This compactness
result is known as Blaschke’s theorem, see [3, Th. 6.1].

A sequence of closed sets Cn converges in the sense of Kuratowski to C, and we
write Cn

K−−−−→
n→∞

C, whenever the two properties hold:

(1) Given a sequence xn ∈ Cn, all its cluster points are contained in C.
(2) For all points x ∈ C there exists a sequence xn ∈ Cn, converging to x.

Again, one can show that Cn → C in the sense of Kuratowski if and only if
dist(x,Cn) → dist(x,C) (possibly infinite if C = ∅) locally uniformly (see [29,
Cor. 4.7]). In addition, the Bolzano-Weierstrass property holds for the Kuratowski
convergence as well, i.e., any sequence of closed sets has a subsequence which
converges, possibly to the empty set.

It is classical that Hausdorff and Kuratowski convergences coincide on sequences on
uniformly bounded compact sets, the next lemma describes a more subtle relationship.
We prove it in Appendix B.

Lemma 2.1. — Let (Cn)n∈N be a sequence of closed sets in Rd, converging to C in the
sense of Kuratowski. Then, for any x ∈ Rd,

Cn ∩BR(x)
dH−−−−→

n→∞
C ∩BR(x),

for every radius R > 0 such that C ∩BR(x) = C ∩ BR(x). Moreover, that condition
holds for all R > 0 except in a countable set.
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One-dimensional approximation of measures in Wasserstein distance 105

2.1.2. Convergence of measures. — Given a Borel set X ⊂ Rd, we denote by M(X)

(resp. M+(X)) the collection of the finite (resp. finite positive) Radon measures on X.
The space of Borel probability measures on X is denoted by P(X), and Pp(X) refers
to its subset of probability measures with finite p-moment (p ⩾ 1).

Following [3], we say that a sequence (µn)n∈N of Radon measures on Rd locally
weakly-⋆ converges to some Radon measure µ, if, for every continuous function with
compact support ϕ ∈ Cc(Rd),

(2.2)
∫
Rd

ϕdµn −−−−→
n→∞

∫
Rd

ϕdµ.

Any sequence (µn)n∈N of Radon measures such that supn∈N |µn| (K) < +∞ for every
compact set K ⊂ Rd has a locally weakly-⋆ convergent subsequence.

If {µn}n∈N ⊂ M(Rd) is a sequence of finite Radon measures and (2.2) holds for
every bounded continuous function ϕ ∈ Cb(Rd), we say that µn narrowly converges
to µ, and we write µn −−−−⇀

n→∞
µ. When (µn)n∈N is a sequence of probability measures,

that convergence is often referred to as the weak convergence of probability measures.
If X is compact, any sequence of probability measures {µn}n∈N ⊂ P(X) has

a weakly convergent subsequence. More generally, if X is not compact, compact-
ness for the narrow convergence requires the assumptions of Prokhorov’s theorem,
see [2, Th. 2.8].

2.1.3. Optimal transport and the Wasserstein distance. — The Wasserstein distan-
ces Wp are defined through the value function of an optimal transport problem,
see [4, 30, 32] for details. Given two probability measures µ, ν ∈ Pp(Rd), we set

(2.3) W p
p (µ, ν)

def.
= min

γ∈Π(µ,ν)

∫
Rd×Rd

|x− y|pdγ,

where Π(µ, ν)
def.
=

{
γ ∈ P

(
Rd × Rd

)
: π0♯γ = µ, π1♯γ = ν

}
is the space of transport

couplings, and πi denote the projections, i.e., π0(x, y) = x and π1(x, y) = y. When-
ever µ does not have atoms, the value of (2.3) coincides with

(2.4) inf
T♯µ=ν

∫
Rd

|x− T (x)|pdµ,

where the inf is taken over all measurable maps T such that T♯µ(A) = ν(A) =

µ(T−1(A)) for any Borel set A.
The optimal transport problem can be analogously defined for any pair of positive

µ, ν in M+(Rd). In this case, the Wasserstein distance becomes a 1-homogeneous
functional and is finite if and only if the measures have finite p-moments and the
same total mass µ(Rd) = ν(Rd).

The Wasserstein distance is l.s.c. with respect to the narrow convergence, and
continuous in a compact domain, [32, Lem. 4.3].

J.É.P. — M., 2025, tome 12



106 A. Chambolle, V. Duval & J. M. Machado

2.2. Gołąb’s theorem. — We now study the lower semicontinuity of (PΛ). “Gołąb’s
theorem” [15] shows that along sequences of connected sets, the length is lower semi-
continuous with respect to the Hausdorff convergence [24, Chap. 10]. It is of course
also true if the sequence has a uniformly bounded number of connected components.

The issue is that the compactness of Hausdorff convergence is not transferred to
the weak convergence of measures of the form H1 Σ which may concentrate in the
limit. In general, one can prove the following:

Theorem 2.2 (Density version of Gołąb’s theorem). — Let (Σn)n∈N be a sequence of
closed and connected subsets of Rd converging in the sense of Kuratowski to some
closed set Σ and having locally uniformly finite length, i.e., for all R > 0

sup
n∈N

H1(Σn ∩BR(x0)) < +∞.

Define the measures µn
def.
= H1 Σn, and let µ be a local weak-⋆ cluster point of this

sequence. Then suppµ ⊂ Σ and it holds that

µ ⩾ H1 Σ,

in the sense of measures.

Such a result is hidden in the proof in [5] of the usual thesis of Gołąb’s theorem,
see also [28]. Yet in this variant, we consider a Kuratowski convergence and do not
restrict the sets to be uniformly bounded, or have bounded lengths. This is useful for
the proof of Theorem 6.1 where we consider sequences of blow-ups of sets. The proof
of Theorem 2.2 is given in Appendix B.

2.3. Rectifiable sets and measures. — We now introduce the notions of rectifiable
sets and rectifiable measure, which will be crucial for understanding the fine properties
of the elements of A.

Definition 2.3. — Let M ⊂ Rd be a Borel set and k ∈ N, we say that M is countably
Hk-rectifiable, or shortly k rectifiable, if there are countably many Lipschitz functions
fi : Rk → Rd such that

Hk
(
M ∖

⋃
i∈N

fi(Rk)
)
= 0.

A Radon measure µ is said to be k-rectifiable if it is supported over a k-rectifiable set
and µ≪ Hk.

In the simple case M = f(E), for E ⊂ Rk, one can define the tangent space at a
point of differentiability of f as

∇f(z)(Rk), for x = f(z).

This is a parametric definition that can be extended to k-rectifiable sets. It turns out
the parametric notion of tangentiability can be expressed in terms of measure theory.

J.É.P. — M., 2025, tome 12



One-dimensional approximation of measures in Wasserstein distance 107

Given a Borel set M , we set the measure µ = Hk M , and we consider the family of
blow-up measures

(2.5) µr
def.
= r−kΦx,r

♯ µ = Hk
(M − x

r

)
, for Φx,r def.

=
id − x

r
.

If M is countably Hk-rectifiable, and Hk(M ∩K) < +∞ for every compact set K,
we say that M is locally Hk-rectifiable, and then the blow-up theorem, see [23,
Th. 10.2], states that for Hk-a.e. x ∈ M this family of measures converges in the
weak-⋆ topology to a measure of the form Hk πx, for a unique k-plane πx ∈ G(k, d),
the Grassmannian of k-planes of Rd.

More generally define the k-density, whenever the limit exists, of a Radon measure µ
as

(2.6) θk(µ, x)
def.
= lim

r→0+

µ(Br(x))

ωkrk
and θk(M,x)

def.
= θk(H

k M,x),

where ωk is the volume of the unit k-dimensional ball, see [3, 23]. A direct consequence
of the blow-up theorem is that Hk-a.e. point of a k-rectifiable set has k-density 1.
Analogously for a k-rectifiable measure µ it holds that µ = θk(µ, x)H

k M .
The equivalence between all notions was completed with the work of Preiss and

the notion of a tangent space to a measure, see for instance the monograph [11].
It implies that a measure (resp. a set) which has almost everywhere a finite and non
zero k-density is k-rectifiable. In particular, one has the following theorem.

Theorem 2.4. — Let µ be a Radon measure over Rd, the following are equivalent.
(i) µ is k-rectifiable.
(ii) For Hk-a.e. x ∈ suppµ, the limit in (2.6) exists and

r−kΦx,r
♯ µ

⋆−−−⇀
r→0

θk(µ, x)H
k πx,

for a unique k-plane πx ∈ G(k, d).
(iii) For Hk-a.e. x ∈ suppµ, the k-density of µ in (2.6) exists, is finite and positive.

In the previous theorem, if we take µ = Hk M where M is a countably
Hk-rectifiable set we define the approximate tangent space of M at x as TxM

def.
= πx,

where πx is the unique k-plane from point (ii).

Definition 2.5. — Let M ⊂ Rd be a k-rectifiable set. We say that x ∈ M is a recti-
fiability point when the locally weakly-⋆ convergence of point (ii) from Theorem 2.4
holds, with µ = Hk M and θk(µ, x) = 1.

Now we pass to our case of interest, of compact connected sets Σ with finite length,
H1(Σ) < +∞, in view of (1.1). From [10, Prop. 30.1 & Cor. 30.2] or [1, Th. 4.4], any
compact connected set with finite length is also path-connected, i.e., any pair of its
points can be joined by a continuous arc. Such sets are also known to be 1-rectifiable,
see [5, Th. 4.4.8], and hence they enjoy the properties of Theorem 2.4. In the next
lemma, we show that the blow-up of some Σ ∈ A around a rectifiability point is
precisely its approximate tangent space.
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108 A. Chambolle, V. Duval & J. M. Machado

Lemma 2.6. — Given Σ ∈ A, then for H1-a.e. y ∈ Σ, it holds that
Σ− y

r

K−−−−→
r→0+

TyΣ and Σ− y

r
∩BR(0)

dH−−−−→
r→0+

TyΣ ∩BR(0), for all R > 0.

Proof. — First we take a rectifiability point y ∈ Σ with tangent space TyΣ, by Theo-
rem 2.4 such points cover H1-a.a. of Σ. In particular, point (ii) of the theorem shows
that

H1 ((Σ− y)/r)
⋆−−−⇀

r→0
H1 TyΣ.

Let T be the (Kuratowski) limit of a subsequence (Σ−y)/rk. Clearly, the limit measure
H1 TyΣ is supported by T , hence TyΣ ⊂ T . Thanks to Lemma 2.1 and Theorem 2.2,
for almost all R > 0,

(2.7) H1(T ∩BR) ⩽ lim inf
k→∞

H1
(Σ− y

rk
∩BR

)
= H1(TyΣ ∩BR),

which shows that up to a H1-negligible set, T = TyΣ.
Notice that, if there is some x ∈ T ∖ TyΣ, we may consider some ball Bs(x)

which does not intersect TyΣ. Since T is the limit of connected sets, x must be
path-connected in T to some point in (Bs(x))

c, so that H1(T ∩ Bs(x)) ⩾ s. This
contradicts (2.7). Hence T = TyΣ, and is independent of the subsequence, and we
deduce that (Σ − y)/r

K→ TyΣ. The convergence in the Hausdorff distance follows
from Lemma 2.1. □

3. The length functional and the relaxed problem

If a minimizing sequence Σn converges to some set Σ, we cannot expect weak cluster
points of the measures νΣn

to have the form νΣ, see Figure 1. Hence the objective
of (PΛ) is not lower semi-continuous for the narrow convergence, and, in this section,
we introduce a relaxation for (PΛ). First, we define a functional which extends the
length of the support and we discuss some of its properties, then we use it to define
the relaxed problem.

3.1. Definition and elementary properties. — Recalling that A is the collection of
the compact connected sets Σ ⊂ Rd with 0 < H1(Σ) < +∞, we consider

(3.1) ℓ : P(Rd) ∋ ν 7−→

H1(Σ) if ν =
1

H1(Σ)
H1 Σ for some Σ ∈ A,

+∞ otherwise,

so that (PΛ) becomes infν W p
p (ρ0, ν)+Λℓ(ν). As discussed above, ℓ is not l.s.c., hence

we introduce the following relaxation, which we call the length functional. For any
ν ∈ P(Rd), we define

(3.2) L(ν)
def.
=

{
inf{α ⩾ 0 | αν ⩾ H1 supp ν} if supp ν is connected,
+∞ otherwise,

with the convention that inf ∅ def.
= +∞. Notice that, since ν is a probability measure,

L(ν) ⩾ H1(supp ν), and that L(ν) = 0 if and only if ν = δx for some x ∈ Rd.
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One-dimensional approximation of measures in Wasserstein distance 109

As a result, 0 < L(ν) < ∞ if and only if supp ν ∈ A. Moreover, for any Σ ∈ A and
νΣ

def.
= (1/H1(Σ))H1 Σ, we have L(νΣ) = H1(Σ) = ℓ(νΣ).

Remark 3.1. — Definition (3.2) also makes sense for any positive measure µ ∈
M+(Rd). In that case, thanks to Theorem 2.2, it may be easily shown to be lower
semi-continuous with respect to the weak convergence, defining L(0) = 0 (see also
Section 3.2). Yet then, of course, even for uniformly distributed measures such as
ν = θH1 Σ for some θ > 0, its value does not coincide with the length of the
support anymore (it rather is H1(Σ)/ν(Rd)).

In Section 3.2 below, we prove that L is the lower semi-continuous envelope of ℓ
for the narrow topology of probability measures. Before that, let us discuss some
alternative formulations for L. Following [3, §2.4], we consider the upper derivative,

(3.3) ∀x ∈ supp ν, D+
ν (H

1 supp ν)(x)
def.
= lim sup

r→0+

H1(Br(x) ∩ supp ν)

ν(Br(x))
.

Proposition 3.2 (Alternative definitions of L). — Let ν ∈ P(Rd) be such that supp ν
is connected. Then

L(ν) = sup
{H1(U ∩ supp ν)

ν(U)
| U open, U ∩ supp ν ̸= ∅

}
(3.4)

= sup
{H1(Br(x) ∩ supp ν)

ν(Br(x))
| r > 0, x ∈ supp ν

}
(3.5)

=
∥∥D+

ν (H
1 supp ν)

∥∥
∞ ,(3.6)

where ∥·∥∞ denotes the supremum norm over supp ν.

Proof. — It is immediate that

(R.H.S. of (3.2)) ⩾ (R.H.S. of (3.4)) ⩾ (R.H.S. of (3.5)) ⩾ (R.H.S. of (3.6)).

Now, assume that
∥∥D+

ν (H
1 supp ν)

∥∥
∞ < +∞ and let α >

∥∥D+
ν (H

1 supp ν)
∥∥
∞.

For every compact set K ⊂ Rd and every x ∈ K ∩ (supp ν), there is some r(x) > 0

such that H1 (Br(x) ∩ (supp ν)) ⩽ αν(Br(x)). We may extract from the covering
(Br(x)(x))x∈K∩(supp ν) with open sets a finite covering (Bri(xi))

N
i=1 of K ∩ (supp ν).

As a result

H1(K ∩ (supp ν)) ⩽
N∑
i=1

αν(Bri(xi)) ⩽ Nα < +∞,

so that H1 (supp ν) is a Radon measure. We may thus apply [3, Prop. 2.21] to
deduce

(R.H.S. of (3.6)) ⩾ (R.H.S. of (3.2)).
If

∥∥D+
ν (H

1 supp ν)
∥∥
∞ = +∞, the inequality holds trivially, which completes the

proof. □

The length functional inherits some of the properties of the H1 measure.
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Proposition 3.3. — Let f : Rd → Rd, be a k-Lipschitz function, with k > 0. Then

(3.7) ∀ν ∈ P(Rd), L(f♯ν) ⩽ kL(ν).

Proof. — If L(ν) = +∞, there is nothing to prove. Otherwise, supp ν is compact, and
supp(f♯ν) = f(supp ν). Moreover, for any open set U ⊂ Rd, since f−1(U) is open,

U ∩ (supp f♯ν) ̸= ∅ ⇐⇒ ν(f−1(U)) > 0 ⇐⇒ f−1(U) ∩ (supp ν) ̸= ∅.

Now, let U be an open set which intersects supp(f♯ν). Using that

U ∩ f(supp ν) ⊂ f
(
f−1(U) ∩ supp ν

)
,

we get

H1 (U ∩ supp(f♯ν))

f♯ν(U)
=

H1 (U ∩ f(supp ν)))
ν(f−1(U))

⩽
H1

(
f
(
f−1(U) ∩ supp ν

))
ν(f−1(U))

⩽ k
H1

(
f−1(U) ∩ supp ν

)
ν(f−1(U))

⩽ kL(ν),

since f−1(U) is an open set which intersects supp ν. Taking the supremum over all U
yields the claimed inequality. □

It is also possible to express the length-functional using the Besicovitch differenti-
ation theorem [3, Th. 2.22]. Assume that H1(supp ν) < +∞ (otherwise L(ν) = +∞).
Then, the measure H1 supp ν is Radon, and the limit

Dν(H
1 supp ν)(x)

def.
= lim

r→0+

H1(Br(x) ∩ supp ν)

ν(Br(x))
(3.8) (

resp. DH1 supp ν(ν)(x)
def.
= lim

r→0+

ν(Br(x))

H1(Br(x) ∩ supp ν)

)
(3.9)

exists for ν-a.e. x (resp. H1 supp ν-a.e. x).

Proposition 3.4 (Alternative definitions, II). — Let ν ∈ P(Rd) such that supp ν is
connected and H1(supp ν) < +∞. Then

L(ν) =


∥∥∥d(H1 supp ν)

dν

∥∥∥
L∞

ν

if
(
H1 supp ν

)
≪ ν,

+∞ otherwise.
(3.10)

=


0 if supp ν is a singleton,∥∥∥( dν

d(H1 supp ν)

)−1∥∥∥
L∞

H1 supp ν

otherwise.(3.11)

Notice that in Proposition 3.4, both “norms” may take the value +∞, and in (3.11),
we adopt the convention that 1/0 = +∞.
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Proof of Proposition 3.4. — First, we prove (3.10). If
(
H1 supp ν

)
≪ ν then the

Lebesgue-Besicovitch differentiation theorem ensures that

H1 supp ν =
(d (H1 supp ν

)
dν

)
ν ⩽

∥∥∥d (H1 supp ν
)

dν

∥∥∥
L∞

ν

ν.

Therefore,

L(ν) ⩽
∥∥∥d (H1 supp ν

)
dν

∥∥∥
L∞

ν

⩽
∥∥D+

ν (H
1 supp ν)

∥∥
∞ = L(ν).

If
(
H1 supp ν

)
is not absolutely continuous with respect to ν, there is no α > 0

such that αν ⩾ H1 supp ν, and L(ν) = +∞.
Now, we prove (3.11). The case where supp ν is a singleton is already known.

We assume now that H1(supp ν) > 0, and using the Besicovitch differentiation theo-
rem [3, Th. 2.22], we decompose

(3.12) ν = θH1 supp ν + νs,

where

θ(x)
def.
=

dν

d (H1 supp ν)
(x) = lim

r→0+

ν(Br(x))

H1(Br(x) ∩ supp ν)
=

(
D+

ν (H
1 supp ν)(x)

)−1

for
(
H1 supp ν

)
-a.e. x. From the last equality, we get∥∥θ−1

∥∥
L∞

H1 supp ν

⩽
∥∥D+

ν (H
1 supp ν)(x)

∥∥
∞ = L(ν).

To prove the converse inequality, we assume
∥∥θ−1

∥∥
L∞

H1 supp ν

< +∞ (otherwise there
is nothing to prove). Using (3.12), we note that(∥∥θ−1

∥∥
L∞

H1 supp ν

)
ν ⩾ H1 supp ν,

so that L(ν) ⩽
∥∥θ−1

∥∥
L∞

H1 supp ν

. □

We may now examine a few examples.

Example 3.5. — Let ν =
∑∞

n=1 2
−nδqn , where (qn)n⩾1 is a dense sequence in [0, 1].

The support being the set of points x such that ν(Br(x)) > 0 for all r > 0, one has
supp ν = [0, 1] which is connected. However, using (3.2), we see that L(ν) = +∞.

Example 3.6 (Densities on a (H1, 1)-rectifiable set). — Let Σ ⊆ Rd be a closed
connected set with 0 < H1(Σ) < +∞, θ : Σ → R+ a Borel function such that∫
Σ
θdH1 < 1, and let ν = θH1 Σ+ νs be a probability measure, where supp νs ⊂ Σ

and the measures νs and H1 Σ are mutually singular. Then L(ν) = ∥1/θ∥L∞
H1 Σ

:
the length functional ignores the singular part.

Example 3.7 (Parametrized Lipschitz curves). — Let γ : [0, 1] → Rd be a non-
constant Lipschitz curve, and let ν such that for all f ∈ Cb(Rd),

⟨f, ν⟩ def.
=

1

len(γ)

(∫ 1

0

f(γ(t)) |γ̇(t)|dt
)
,
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where len(γ)
def.
=

∫ 1

0
|γ̇(t)|dt is the length of the curve. By the area formula [14,

Th. 3.2.5],

dν(y) =
1

len(γ)
card(γ(−1)(y))d

(
H1 Σ

)
(y),

where Σ = γ([0, 1]). As a result,

(3.13) L(ν) =
len(γ)

ess-miny∈Σ

(
card(γ(−1)(y))

) ,
where the minimum is an essential minimum with respect to H1 Σ.

3.2. Lower semi-continuity of the length functional. — Now, we prove that L is
the lower semi-continuous envelope of ℓ for the narrow convergence.

Proposition 3.8. — The functional L is the lower semi-continuous envelope of ℓ for
the narrow topology. Moreover, for every ν such that L(ν) < +∞,

(3.14) H1(supp ν) ⩽ L(ν),

with equality if and only if either ν = δx for some x ∈ Rd (if H1(supp ν) = 0),
or H1(supp ν) > 0 and ν = (1/H1(supp ν))H1 supp ν, i.e., ν = νΣ for some
Σ ∈ A, as defined in (1.1).

Proof of Proposition 3.8. — The inequality (3.14) is clear from the definition of (3.2),
so we study the equality case.

If ν = δx or ν = (1/H1(supp ν))H1 supp ν with H1(supp ν) > 0, one readily
checks that L(ν) = H1(supp ν). Conversely, if (3.14) is an equality, for every Borel
set B,

0 = L(ν)−H1(supp ν)

=
(
L(ν)ν(B)−H1(B ∩ supp ν)

)︸ ︷︷ ︸
⩾0

+
(
L(ν)ν(B∁)−H1(B∁ ∩ supp ν)

)
︸ ︷︷ ︸

⩾0

,

so that both terms must be zero. If L(ν) > 0, we deduce

∀B ⊂ Rd Borel, ν(B) =
H1(B ∩ supp ν)

L(ν)
=

H1(B ∩ supp ν)

H1(supp ν)
.

If L(ν) = 0, H1(supp ν) = 0 and since supp ν is connected, ν is a Dirac mass.
Next we prove that L is sequentially lower semi-continuous. We consider (νn)n∈N

such that νn −−−−⇀
n→∞

ν ∈ P(Rd) and we show that α def.
= lim infn→∞ L(νn) ⩾ L(ν).

If α=+∞, we have nothing to prove. Otherwise, up to the extraction of a subsequence,
we may assume that limn→∞ L(νn) = α and that L(νn) < +∞ for all n ∈ N.

Defining the sequence of compact and connected sets Σn
def.
= supp νn, it holds that

H1(Σn) ⩽ L(νn), so that

sup
n⩾N

H1(Σn) ⩽ α+ 1 < +∞
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for N large enough. Hence, for all n ⩾ N , diam(Σn) ⩽ α + 1. In addition, let x ∈
supp ν. Since 0 < ν(B1(x)) ⩽ lim infn→∞ νn(B1(x)), for all n large enough (supp νn)∩
B1(x) ̸= ∅, thus supp νn ⊂ Bα+2(x).

Therefore, we may apply Blaschke’s theorem and assume, up to extracting a subse-
quence, that Σn

dH−−−−→
n→∞

Σ. From the weak convergence of measures one has supp ν ⊂ Σ.
Let us show that supp ν = Σ. If Σ is a singleton {x0}, we have ν = δx0 . Otherwise,
Theorem 2.2 implies that Σ ∈ A and furthermore, as L(νn)νn ⩾ H1 Σn, that

(3.15) αν ⩾ H1 Σ.

Hence, as Σ is connected, for all z∈Σ it holds ν(Br(z))>0, confirming that supp ν=Σ.
Finally from (3.15) we get that

lim inf
n→∞

L(νn) = α ⩾ L(ν),

proving that L is l.s.c.
As a result, we have proved that L is l.s.c. and that L ≡ ℓ on the effective domain

of ℓ. To show that L is the l.s.c. envelope of ℓ, we prove that it is above any l.s.c.
functional G ⩽ ℓ. Let ν ∈ P(Rd). If L(ν) = +∞, we have G(ν) ⩽ L(ν). If L(ν) < +∞,
using Lemma 3.9 below, we can find a sequence νΣn −−−−⇀

n→∞
ν such that H1(Σn) →

L(ν). The lower semi-continuity of G yields

G(ν) ⩽ lim inf
n→∞

G(νΣn
) ⩽ lim inf

n→∞
ℓ(νΣn

) = lim inf
n→∞

H1(Σn) = L(ν). □

The proof of Proposition 3.8 relies on the following approximation lemma.

Lemma 3.9. — Let ν∈P(Rd) such that L(ν)<∞. There exists a sequence (Σn)n∈N⊂A

such that
• Σn

dH−−−−→
n→∞

supp ν,
• νΣn −−−−⇀

n→∞
ν and Wp(νΣn , ν) −−−−→

n→∞
0 for any p ⩾ 1, where νΣn is defined as

in (1.1).
We also have H1(Σn) −−−−→

n→∞
L(ν) and if, in addition L(ν) > 0, we can take H1(Σn) =

L(ν) for all n ∈ N.

Proof. — To simplify the notation, we set α = L(ν) and Σ = supp ν. For α = 0 (that
is, ν = δx0

for some x0), we consider

Σn = x0 + [0, 1/n]× {0}d−1,

which provides the desired approximation, with H1(Σn) = 1/n→ 0 = L(δx0
).

For α > 0, we start by covering the space with cubes of the form

Qz,n
def.
=

1

n
(z + [0, 1)d), for z ∈ Zd.

For some fixed n, let (Qi,n)i∈In
be the collection of the cubes such that ν (Qz,n) > 0,

since the set Σ is compact, In is finite for a given n. We define the quantities

mi,n
def.
= αν(Qi,n)−H1(Σ ∩Qi,n) ⩽ α,
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as the excess mass of ν in the cube Qi,n (note that mi,n ⩾ 0 in view of (3.2)). Our
strategy is to modify ν Qi,n by adding segments with uniform measure inside the
cube and having a total length equal to the excess mass mi,n.

If Σ ∩ intQi,n ̸= ∅, take xi in this intersection, so that Bδi(xi) ⊂ Qi,n for some
δi > 0. Then, set Ni,n

def.
= ⌈mi,n/δi⌉, and choose δi,j ⩾ 0 for j = 1, . . . , Ni,n such that
Ni,n∑
j=1

δi,j = mi,n, and 0 ⩽ δi,j < δi.

Since H1(Σ∩Qi,n) < +∞, it is possible to chooseNi,n vectors vi,j ∈ Sd−1 such that the
segments Si,j

def.
= [xi, xi+δi,jvi,j ] are contained in intQi,n and satisfy H1(Σ∩Si,j) = 0

, for j = 1, . . . , Ni,n.
If Σ∩ intQi,n = ∅, as the cubes have positive mass, it means that ν is concentrated

on the boundary of the cube, in which case we take xi ∈ Σ ∩ ∂Qi and any family of
segments entering the cube will suffice.

Next, we define the measures

νΣn

def.
=

1

H1(Σn)
H1 Σn for Σn

def.
= Σ ∪

⋃
i∈In

Ni,n⋃
j=1

Si,j .

From the construction, the Hausdorff distance between Σ and Σn is at most the
diagonal of the cube [0, 1/n)d, so that

dH(Σ,Σn) ⩽

√
d

n
−−−−→
n→∞

0,

and the total length of Σn is given by

H1(Σn) =
∑
i∈In

H1(Σ ∩Qi,n) +
∑
i∈In

Ni,n∑
j=1

H1(Si,j)

=
∑
i∈In

H1(Σ ∩Qi,n) +mi,n = α
∑
i∈In

ν(Qi,n) = α.

Each Σn ∈ A since it is connected and compact (as a finite union of compact sets).
To finish the proof, it remains to show that νΣn −−−−⇀

n→∞
ν. By construction, there

exists a compact set K ⊂ Rd such that (supp ν) ∪
⋃

n⩾1 (supp νΣn
) ⊂ K. Then any

function ϕ ∈ Cb(Rd) is uniformly continuous on K, and we denote by ω its modulus
of continuity. Observing that νΣn

(Qi,n) = ν(Qi,n), we note that∣∣∣∣∫
Rd

ϕdνΣn
−
∫
Rd

ϕdν

∣∣∣∣ ⩽ ∑
i∈In

∣∣∣∣∫
Qi,n

ϕdνΣn
−

∫
Qi,n

ϕdν

∣∣∣∣
⩽

∑
i∈In

ω(diamQi,n)ν(Qi,n) ⩽ ω(
√
d/n) −−−−→

n→∞
0.

Hence νΣn
−−−−⇀
n→∞

ν. But as the support of all such measures is contained in the
compact K and the Wasserstein distance metrizes the weak convergence in Pp(K),
see [30, Th. 5.10], it holds that Wp(νΣn

, ν) −−−−→
n→∞

0. □
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Remark 3.10. — The conclusions of Proposition 3.8 and Lemma 3.9 still hold when
replacing the narrow topology with the local weak-⋆ topology.

3.3. A relaxed problem with existence of solutions. — The relaxed problem (PΛ)
introduced on page 103 is defined by replacing ℓ in the original problem with its
l.s.c. envelope L. We define the energy E(ν)

def.
= W p

p (ρ0, ν) + ΛL(ν), and with a slight
abuse of notation, we sometimes write E(Σ) = E(νΣ) for Σ ∈ A. The main point of
considering this relaxed problem is that the existence of solutions for (PΛ) follows
from the direct method of the calculus of variations.

Theorem 3.11. — The relaxed problem (PΛ) admits a solution. In addition, E is the
l.s.c. envelope of W p

p (ρ0, ·) + Λℓ, and:

inf (PΛ) = min (PΛ).

Proof. — Let (νn)n∈N be a minimizing sequence for E. Since
(
supnW

p
p (ρ0, νn)

)
<

+∞, the moments of order p of νn are uniformly bounded (see for instance [30,
Th. 5.11]), and we may then extract a (not relabeled) subsequence converging to some
ν ∈ P(Rd) in the narrow topology (by Prokhorov’s theorem). From Proposition 3.8
and the fact that the Wasserstein distance is lower semi-continuous, the functional E
is l.s.c. and we have that

E(ν) ⩽ lim inf
n→∞

E(νn) = inf (PΛ).

The measure ν is a minimizer of (PΛ).
To show that E is the l.s.c. envelope of the original energy one may argue as in the

proof of Proposition 3.8. Consider any l.s.c. functional G such that

∀ν ∈ P(Rd), G(ν) ⩽W p
p (ρ0, ν) + Λℓ(ν).

For every ν with L(ν) < +∞, we use Lemma 3.9 to build a sequence (νn)n∈N such
that W p

p (ρ0, νΣn
) → W p

p (ρ0, ν). Indeed, as νΣn
converges to ν for the Wasserstein

distance, the triangle inequality gives

|Wp(ρ0, νΣn
)−Wp(ρ0, ν)| ⩽Wp(νΣn

, ν) −−−−→
n→∞

0.

Hence for any ν ∈ Pp(Rd) it holds that

G(ν) ⩽ lim inf
n→∞

(
W p

p (ρ0, νΣn
) + Λℓ(νΣn

)
)
=W p

p (ρ0, ν) + ΛL(ν) = E(ν),

and we conclude that E is the l.s.c. envelope. □

4. On the support of optimal measures

Our goal for this section is to answer the question of “how small” Λ must be in
Theorem 1.1. For this, in Theorem 4.1 we study when solutions of the relaxed problem
(PΛ) are Dirac masses. Keeping this in mind, the rest of this section can be skipped
and the reader can move on to the main results of the paper.
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The following notation will be useful: a point x0 is said to be a p-mean of ρ0 if

x0 ∈ argmin
y∈Rd

∫
Rd

|x− y|pdρ0(x) = argmin
y∈Rd

Wp(ρ0, δy).

A 2-mean is just the mean of ρ0, that is, mρ0

def.
=

∫
Rd xdρ0(x). For p > 1, the p-mean is

uniquely defined, but for p = 1 the collection of 1-means is a closed convex set which
is not reduced to a singleton in general.

Theorem 4.1. — For a fixed measure ρ0 ∈ Pp(Rd) there exists a critical parameter
Λ⋆ ∈ [0,∞) such that

• for Λ < Λ⋆ no solution of (PΛ) is a Dirac measure;
• for Λ > Λ⋆ it holds that argmin (PΛ) is the set of p-means of ρ0.

Moreover, Λ⋆ = 0 if and only if ρ0 is a Dirac mass.

We start by studying the support of the optimal measure, showing that it is con-
tained in the convex hull of the support of ρ0. In the sequel the proof of Theorem 4.1
will be divided in several steps. We end the section with an example of ρ0 composed
of 2 Dirac masses.

4.1. Elementary properties of the support. — Given a set A ⊂ Rd we denote by
convA its closed convex hull.

Lemma 4.2. — Let ν ∈ P(Rd) be a solution to (PΛ). Then the following properties
hold

(1) H1(supp ν) ⩽ (1/Λ)W p
p (ρ0, δmρ0

), where mρ0
is any p-mean of ρ0. In particu-

lar, Σ is contained in a ball of diameter d0
def.
= (1/Λ)W p

p (ρ0, δmρ0
).

(2) supp ν ⊂ conv (supp ρ0) ∩B
(
mρ0 , 2Wp(ρ0, δmρ0

) + (2/Λ)W p
p (ρ0, δmρ0

)
)
.

Proof. — For the first point, let Σ denote the support of ν. Since ν has finite energy
we have that L(ν) ⩾ H1(Σ). Thus, since it is also optimal

(4.1) ΛH1(Σ) ⩽W p
p (ρ0, ν) + ΛL(ν) ⩽W p

p (ρ0, δmρ0
) + ΛL(δmρ0

) =W p
p (ρ0, δmρ0

).

For the second point, let C def.
= conv (supp ρ0). It is a nonempty closed convex set,

therefore the projection onto C is well-defined and 1-Lipschitz. We denote it by f .
By Proposition 3.3, it holds that L(ν) ⩾ L(f♯ν). Moreover, for every (x, y) ∈ C ×Rd,

|x− y|2 = |x− f(y)|2 + |f(y)− y|2 + 2 ⟨x− f(y), f(y)− y⟩︸ ︷︷ ︸
⩾0

⩾ |x− f(y)|2

with equality if and only if y ∈ C. As a result, if γ is an optimal transport plan for
(ρ0, ν),

W p
p (ρ0, ν) =

∫
|x− y|p dγ(x, y) ⩾

∫
|x− f(y)|p dγ(x, y)

=

∫
|x− y|p d ((id, f)♯γ) (x, y) ⩾W p

p (ρ0, f♯ν),

with strict inequality unless y ∈ C for γ-a.e. (x, y) (hence ν-a.e. y).
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But ν is a solution to (PΛ), therefore the inequality

W p
p (ρ0, ν) + ΛL(ν) ⩾W p

p (ρ0, f♯ν) + ΛL(f♯ν)

cannot be strict. We deduce that y ∈ C for ν-a.e. y, and C being closed, that Σ ⊂ C.
Additionally, from (4.1), we have Wp(ν, δmρ0

) ⩽ 2Wp(ρ0, δmρ0
) and in particular

there are points y ∈ Σ such that |y −mρ0
| ⩽ 2Wp(ρ0, δmρ0

). Combined with the first
point, we obtain that Σ ⊂ B

(
mρ0 , 2Wp(ρ0, δmρ0

) + (2/Λ)W p
p (ρ0, δmρ0

)
)
. □

Example 4.3. — Let ρ0 = δx0
for some x0 ∈ Rd. Then both conditions from

Lemma 4.2 are sharp and characterize for all Λ > 0 the unique solution δx0 of (PΛ).

4.2. When solutions are Dirac masses. — Now, we discuss whether or not Dirac
masses are solutions in the case where ρ0 is not a Dirac measure. We start with the
following lemma.

Lemma 4.4. — Let Λ > 0 such that δx0
∈ argmin (PΛ), for Λ′ > Λ it holds

• for p > 1 that δx0 is the unique solution of (PΛ′),
• for p = 1 that argmin (PΛ′) consists of only Dirac masses.

Proof. — If δx0
∈ argmin (PΛ), for any p ⩾ 1, and for any measure ν with L(ν) > 0

it holds that

W p
p (ρ0, δx0

) ⩽W p
p (ρ0, ν) + ΛL(ν) < W p

p (ρ0, ν) + Λ′L(ν),

and hence ν cannot be a minimizer of (PΛ′). Then for any p ⩾ 1 it holds that
argmin(PΛ′) consists of Dirac measures. Whenever p > 1, the function y 7→W p

p (ρ0, δy)

is strictly convex and hence argmin(PΛ′) is a singleton. □

This simple lemma allows for the definition of the critical value Λ⋆ as follows:

(4.2) Λ⋆
def.
= inf

{
Λ ⩾ 0 : argmin (PΛ) ⊂ (δx)x∈Rd

}
.

As stated in Theorem 4.1, Λ⋆ > 0 whenever ρ0 is not a single Dirac mass, which is a
direct consequence of the convergence of solutions to ρ0 when Λ goes to 0.

Lemma 4.5. — For every ρ0 ∈ Pp(Rd), and Λ > 0, let νΛ be any solution to (PΛ).
Then

νΛ −−−−⇀
Λ→0+

ρ0.

In particular, Λ⋆ > 0 unless ρ0 is a Dirac mass.

Proof. — If L(ρ0) < +∞, it suffices to notice that

W p
p (ρ0, νΛ) ⩽W p

p (ρ0, νΛ) + ΛL(νΛ) ⩽W p
p (ρ0, ρ0) + ΛL(ρ0) = ΛL(ρ0) −−−−→

Λ→0+
0.

However, we need to handle the case where L(ρ0) = +∞.
Let ε > 0. By the density of discrete measures in the Wasserstein space, there

exists a probability measure of the form µ =
∑N

i=1 aiδxi
such that W p

p (ρ0, µ) ⩽ ε.
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We may assume that N ⩾ 2. By connecting all the points {xi}1⩽i⩽N , we obtain a
compact connected set Σ with 0 < H1(Σ) < +∞. For every θ ∈ ]0, 1[, we then define

ρ̃0
def.
=

θ

H1(Σ)
H1 Σ+ (1− θ)µ = θνΣ + (1− θ)µ.

and we note that L(ρ̃0) ⩽ H1(Σ)/θ < +∞.
By the optimality of νΛ,

W p
p (ρ0, νΛ) ⩽ ΛL(νΛ) +W p

p (ρ0, νΛ) ⩽ ΛL(ρ̃0) +W p
p (ρ0, ρ̃0).

Taking the upper limit as Λ → 0+, and using the convexity of the Wasserstein
distance yields

lim sup
Λ→0+

W p
p (ρ0, νΛ) ⩽W p

p (ρ0, ρ̃0) ⩽ θW p
p (ρ0, νΣ) + (1− θ)W p

p (ρ0, µ).

Letting θ → 0+ we obtain lim supΛ→0+ W
p
p (ρ0, νΛ) ⩽ ε. Since ε is arbitrary, the claim

follows.
For the last statement, we note that supp ρ0 must be included in the Kuratowski

limits of supp νΛ as Λ → 0, so that if ρ0 is not a Dirac mass, neither is νΛ for Λ > 0

small enough. □

Next, we show that for Λ large enough, the solution becomes a Dirac measure.

Proposition 4.6. — For every ρ0 ∈ Pp(Rd), Λ⋆ < +∞.

Proof. — Choose ν ∈ argmin (PΛ), let Σ
def.
= supp ν and y0 ∈ Σ. Let

r
def.
= min{r′ ⩾ 0 | Σ ⊂ B(y0, r

′)}.

Since Σ is connected one has r ⩽ H1(Σ) < +∞. The convexity of the p-norm yields

∀x, y ∈ Rd, |x− y|p ⩾ |x− y0|p − p |x− y0|p−1 |y − y0| .

As a result, if γ is an optimal transport plan for (ρ0, ν),

E(ν) =

∫
Rd×Rd

|x− y|p dγ(x, y) + ΛL(ν)

⩾
∫
Rd×Rd

|x− y0|p dγ(x, y)− p

∫
Rd×Rd

|x− y0|p−1 |y − y0|dγ(x, y) + ΛH1(Σ)

⩾ E(δy0
) + r

(
Λ− p

∫
Rd

|x− y0|p−1
dρ0(x)

)
.

By optimality of ν, we have E(ν) ⩽ E(δy0
), so that r = 0 and ν is a Dirac mass

as soon as (
Λ− p

∫
Rd

|x− y0|p−1
dρ0(x)

)
> 0.

On the other hand as soon as r > 0, this expression must be negative, and it follows
that

Λ⋆ ⩽ p

∫
Rd

|x− y0|p−1
dρ0(x).
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Note that this bound depends on ν (through Σ) and therefore also on Λ. Yet, as
observed in the proof of Lemma 4.2, point (2), we can choose y0 ∈ Σ with |y0−mρ0 | ⩽
2Wp(δmρ0

, ρ0). It follows that

Λ⋆ ⩽ max
y0∈B(mρ0 ,2Wp(δmρ0

,ρ0))

(
p

∫
Rd

|x− y0|p−1
dρ0(x)

)
,

which is a (pessimistic) a priori bound depending only on ρ0. □

Remark 4.7. — In some cases, it is possible to provide sharper bounds on Λ⋆:
• If p = 1, we see that Λ⋆ ⩽ 1.
• If p = 2, it can be shown by a simple translation argument that ν and ρ0

have the same barycenter. Then, one may adapt the above argument to get Λ⋆ ⩽
2
∫
|x−mρ0 |dρ0(x), where mρ0 =

∫
xdρ0(x).

4.3. The example of an input with two Dirac masses. — In this subsection we con-
sider the case p = 2. Let x−1 = (−1, 0, . . . , 0), x1 = (1, 0, . . . , 0) ∈ Rd, and let
ρ0 = 1

2

(
δx−1

+ δx1

)
. By Lemma 4.2, we know that the solutions to (PΛ) are sup-

ported on line segments which are contained in [x−1, x1]. We may thus reduce the
problem to the one-dimensional setting, with x−1 = −1, x1 = 1. The solution to that
problem is given by the following proposition.

Proposition 4.8. — For p = 2 and ρ0 = 1
2 (δ−1 + δ1), the unique solution to (PΛ) is

given by

νΛ =


√

3Λ
2 H1 [−1, 1] +

(
1
2 −

√
3Λ
2

)
(δ−1 + δ1) if 0 < Λ < 1/6,

1
3(1−2Λ)H

1
[
− 3

2 (1− 2Λ), 32 (1− 2Λ)
]

if 1/6 ⩽ Λ < 1/2,

δ0 if Λ ⩾ 1/2.

(4.3)

Proof. — We fix Λ > 0 and denote ν a solution. Let α = L(ν). If α = 0, ν is
a Dirac mass. If α > 0, we know that the support of ν is a connected subset of
conv{−1, 1} = [−1, 1], so that supp ν = [a, b] for −1 ⩽ a < b ⩽ 1. In addition, letting
c ∈ [a, b] such that ν([a, c[) ⩽ 1/2 and ν([a, c]) ⩾ 1/2, one can check that if some mass
is sent from {−1} to ]c, b], then exchanging it with the same amount of mass sent from
{+1} to [a, c[ we reduce the Wasserstein distance. Hence one may assume that the
mass coming from {−1} is sent to a measure ν− supported on [a, c] while the mass
from {+1} is sent to a measure ν+ supported on [c, b], with ν− + ν+ = ν. Observing
that ν ⩾ 1

αH
1 [a, b] (we are in the case α > 0), we introduce the non-negative excess

measures:
ν−exc = ν− − 1

α
H1 [a, c], ν+exc = ν+ − 1

α
H1 [c, b],

and νexc = ν−exc + ν+exc. Once more, we see that the Wasserstein distance is reduced
if all the mass sent from {−1} to ν−exc is sent to the point {a}, closest to {−1}.
Hence, we may assume that ν−exc = xδa, for x ⩾ 0, and similarly, ν+exc = yδb, for
y ⩾ 0. Eventually, we easily see that if a > −1 and x > 0, then we can extend the
segment [a, b] towards {−1}, adding a small piece [a − δ, δ] for δ ⩽ min{αx, a + 1},
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send a fraction δ/α of the measure xδa rather to 1
αH

1 [a − δ, a], and reduce again
the Wasserstein distance without changing L(ν). We deduce that x = 0 if a > −1,
similarly y = 0 if b < 1.

Recalling that for p = 2, ν must have the same center of mass as ρ0, we deduce
that ν must be equal to

ν0,0
def.
= δ0,

or νb,2b
def.
=

1

2b
H1 [−b, b] for some b ∈ ]0, 1[,

or ν1,α =
1

α
H1 [−1, 1] +

(1
2
− 1

α

)
(δ−1 + δ1) for some α ⩾ 2.

Let E(ν) = ΛL(ν)+W 2
2 (ρ0, ν) denote the energy to minimize. We have E(ν0,0) = 1 =

limb→0+ E(νb,2b), and

E(νb,2b) = 2Λb+ 2

∫ b

0

(1− x)2
dx

2b
=
b2

3
+ (2Λ− 1)b+ 1,

with d

db
E(νb,2b) =

2b

3
+ 2Λ− 1,

E(ν1,α) = Λα+ 2

∫ 1

0

(1− x)2
dx

α
+ 0 = Λα+

2

3α
,

with d

dα
E(ν1,α) = Λ− 2

3α2
.

• For 0 < Λ < 1/6, we check that ν1,α∗ , for α∗ def.
=

√
2/3Λ, is the unique solution.

• For 1/6 ⩽ Λ < 1/2, we get that νb∗,2b∗ is the unique solution, with b∗
def.
=

3
2 (1− 2Λ).

• For Λ ⩾ 1/2, the functions α 7→ E(ν1,α) and b 7→ E(νb,2b) are strictly increasing
on [2,+∞[ and ]0, 1] respectively. Therefore ν0,0 is the unique solution to (PΛ). □

5. Solutions are rectifiable measures

Our goal here is to show that whenever ρ0 ≪ H1, any solution ν is a rectifiable
measure of the form

ν = θH1 Σ, for θ ∈ L1(Σ;H1).

To this end, we introduce the excess measure νexc as the positive measure given by
the mass of ν that exceeds the density constraints. We first show that this measure
solves a family of localized problems. This is used to prove the absolute continuity
with respect to H1 Σ, that is, point (1) of Theorem 1.1.

5.1. The excess measure. — Let ν be a minimizer of (PΛ) with support Σ not redu-
ced to a singleton. From the definition of the length functional we have:

L(ν) <∞ if and only if there is α ⩾ 0 such that αν ⩾ H1 Σ.

Setting α def.
= L(ν) > 0, we define the following decomposition

(5.1) ν = νH1 + νexc, where νH1
def.
= α−1H1 Σ and νexc

def.
= ν − νH1 .
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The part νH1 is the measure which saturates the density constraint, and the support
of the excess measure νexc is where the constraint is inactive.

In the sequel, we fix an optimal transport plan γ, for the problem defining
W p

p (ρ0, ν), and we define an analogous (non-unique) decomposition of γ and ρ0
by disintegrating γ with respect to the second marginal. From the disintegration
theorem [3, Th. 2.28], there exists a ν-measurable family {γy}y∈Rd ⊂ P(Rd), such
that γ = γy ⊗ ν, that is

(5.2)
∫
Rd×Σ

ψ(x, y)dγ(x, y) =

∫
Σ

(∫
Rd

ψ(x, y)dγy(x)

)
dν(y), for all ψ ∈ L1(γ).

We define a decomposition γ = γH1 + γexc as

(5.3) γH1(A×B)
def.
=

∫
Σ∩B

γy(A)dνH1(y), γexc(A×B)
def.
=

∫
Σ∩B

γy(A)dνexc(y).

The decomposition ρ0 = ρH1 + ρexc can be defined as the marginals of γH1 and γexc

(5.4) ρH1
def.
= (π0)♯γH1 , ρexc

def.
= (π0)♯γexc.

This way γH1 ∈ Π(ρH1 , νH1), γexc ∈ Π(ρexc, νexc) and they are optimal transport
plans between their respective marginals. Indeed if we find a better transport plan for
either problem we can construct a better plan for the original problem, contradicting
the minimality of γ. We therefore also have a decomposition between the Wasserstein
distances
(5.5) W p

p (ρ0, ν) =W p
p (ρH1 , νH1) +W p

p (ρexc, νexc).

Let us point out that, although the decomposition of ν is natural, there are many
ways to decompose γ and ρ0, for instance by choosing another disintegration family.
In the sequel we show that for any such decomposition the excess must be concentrated
on the graph of the operator given by the (multivalued) projection onto Σ

(5.6) ΠΣ(x)
def.
= argmin

y∈Σ
|x− y|2.

Note that ΠΣ is a multivalued operator which is included in the subgradient of the
convex conjugate of the function: y 7→ |y|2/2 if y ∈ Σ and +∞ else.

Lemma 5.1. — Let ν be a minimizer of (PΛ) and γ an optimal transport plan from ρ0
to ν. Then, for any decomposition γ = γH1 + γexc, s.t. (π1)♯γexc = νexc, it holds that
(5.7) supp γexc ⊂ graph(ΠΣ).

In addition, for any πΣ measurable selection of x 7→ ΠΣ(x), the measure
νH1 + (πΣ)♯ρexc

is optimal for (PΛ).

Proof. — Consider the problem

inf
γ∈Pp(Rd×Rd)
(π0)♯γ=ρ0,

∫
Rd×Rd

|x− y|p dγ(x, y) + ΛL((π1)♯γ),(QΛ)

which is a reformulation of (PΛ) in terms of the transport plan γ from ρ0 to ν.

J.É.P. — M., 2025, tome 12



122 A. Chambolle, V. Duval & J. M. Machado

Now, let (γH1 , γexc) be any suitable decomposition of γ and let πΣ be a measurable
selection of ΠΣ. We set ρexc

def.
= (π0)♯γexc and define γ̃ = γH1 + (id, πΣ)♯ρexc. Then,

since still π1♯γ̃ ⩾ νH1 , it holds that L(π1♯γ̃) ⩽ L(ν) and∫
Rd×Rd

|x− y|p dγ̃ =

∫
Rd×Rd

|x− y|p dγH1 +

∫
Rd

|x− πΣ(x)|p dρexc

⩽
∫
Rd×Rd

|x− y|p dγH1 +

∫
Rd×Σ

|x− y|p dγexc =

∫
Rd×Rd

|x− y|p dγ.

Since γ is a minimizer of (QΛ), we must have an equality, in particular it holds that∫
Rd×Rd

(|x− y|p − |x− πΣ(x)|p) dγexc = 0.

Since γ-a.e. (x, y) is in Rd×Σ, the integrand is nonnegative and must vanish γexc-a.e.
Hence (x, y) ∈ Graph(ΠΣ) for γexc-a.e. (x, y) and (5.7) follows since Graph(ΠΣ) is
closed.

As a consequence, the measure νH1 + πΣ♯ρexc reaches the minimum for (PΛ) and
is optimal. □

5.2. Solutions are absolutely continuous. — Now we prove that the solutions to
the relaxed problem (PΛ) are absolutely continuous with respect to H1 Σ. The
proof is based on the construction of a localized variational problem.

Lemma 5.2. — Let ν be an optimal solution for the relaxed problem (PΛ) and set
α = L(ν). Let S = S0 × S1 ⊂ Rd × Rd be a Borel set and define the transport plan

γS
def.
= γexc S0 × S1

along with its marginals

ρS
def.
= π0♯γS ⩽ ρexc S0, νS

def.
= π1♯γS.

Then the measure νS solves the following variational problem

(5.8) inf

W p
p (ρS, ν

′) :

there exists Γ such that
ν′ ∈ M+(Σ ∪ Γ),

ν′ ⩾ α−1H1 (Γ∖ Σ) ,

Σ ∪ Γ ∈ A, ν′(Rd) = νS(Rd)

 .

More generally, let (σS,t)t∈[0,1] be the constant speed geodesic between ρS and νS

defined through σS,t
def.
= π(1−t)♯

γS, where πt(x, y)
def.
= (1 − t)x + ty. Then for any

t ∈ [0, 1], the measure νS minimizes the variational problem

(5.9) inf

W p
p (σS,t, ν

′) :

there exists Γ such that
ν′ ∈ M+(Σ ∪ Γ),

ν′ ⩾ α−1H1 (Γ∖ Σ) ,

Σ ∪ Γ ∈ A, ν′(Rd) = νS(Rd)

 .

Proof. — See Appendix A. □
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We now craft a specific set S to apply the lemma. Given δ > 0, we define the set

(5.10) Dδ
def.
=

{
x ∈ supp ρexc : δ ⩽ dist(x,Σ) ⩽ δ−1

}
,

And for a fixed point y0 ∈ Σ, and δ, r > 0 consider the new transport plan

(5.11) γδ,r
def.
= γexc Dδ ×Br(y0)

along with its marginals
(5.12) ρδ,r

def.
= π0♯γδ,r ⩽ ρexc Dδ, νδ,r

def.
= π1♯γδ,r.

From Lemma 5.2 it holds that

(5.13) νδ,r ∈ argmin

W p
p (ρδ,r, ν

′) :

there exists Γ such that
ν′ ∈ M+(Σ ∪ Γ),

ν′ ⩾ α−1H1 (Γ∖ Σ),

Σ ∪ Γ ∈ A, ν′(Rd) = νδ,r(Rd)

 .

We also introduce
(5.14) γδ

def.
= γexc Dδ × Σ and νδ

def.
= π1♯γδ,

so that by definition, νδ,r = νδ Br(y0) and νexc can be further decomposed as
νexc = νδ + π1♯

(
γexc Dc

δ × Rd
)
. As Dδ is a nested sequence of sets, (νδ)δ>0 is a

monotone sequence and taking the limit as δ → 0 we have

(5.15) νexc = sup
δ>0

νδ + ρexc Σ,

the second limit being ρexc Σ because of Lemma 5.1 and since the only projection
of a point in Σ is itself.

In the next Theorem 5.4 we show that the measures νδ have a uniformly bounded
density with respect to H1. So when ρ0 is absolutely continuous with respect
to H1, (5.15) shows that any optimal ν ≪ H1. The argument consists in crafting a
competitor for the localized problem (5.13), built as a measure supported on a curve
with controlled length, defined over small sphere, centered at an arbitrary point of
the support of νδ. Letting the radius of this sphere go to zero, and comparing the
energy of this competitor and the optimal measure, gives a uniform bound on the
density. This strategy is illustrated in Figure 2.

Lemma 5.3. — Let B2 be the ball on Rd centered at the origin. There exists a connected
set Γd ⊂ ∂B2 with H1(Γd) < +∞ and such that

dist(x,Γd) ⩽ |x− y| − 1/2

for any x ̸∈ B2 and for all y ∈ B1.

Proof. — We start by covering the sphere ∂B2 with finitely many balls
(
B1/2(xi)

)Nd

i=1
,

each having radius 1/2. The number of balls Nd being dependent on the dimension.
In the sequel we define Γd with geodesics on ∂B2 connecting the centers (xi)

Nd

i=1.
As we have finitely many points, we will also have finitely many curves and hence

H1(Γd) must be a dimensional constant. We can even choose the connected set Γd

with minimal length, which is a solution to Steiner’s problem on the spheres and has a
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Σ

2r < δ

y0

νexc(Br(y0))

r
≫ 1

Σ′ = Σ ∪ Γr

2r < δ

Γ ⊂ ∂B2(0)

H1(Γ) = Ld < ∞

Γr
def.
= y0 + rΓ

H1(Γr) = Ldr

Rescaling

Figure 2. Scheme of the proof of Theorem 5.4. For the new competi-
tor, created with the curve Γ from Lemma 5.3, we pay a little more in
the transportation cost to generate α−1H1 Γr, but pay much less
by projecting the remaining mass onto it.

tree structure, so that we can bound H1(Γd) ⩽ (Nd−1)Dd, where Dd is the diameter
of ∂B2 in its Riemannian metric.

To prove the desired property, take x ̸∈ B2 and y ∈ B1. Let {ŷ} = [x, y] ∩ ∂B2.
Then ŷ ∈ B1/2(xi) for some xi while |x− ŷ| = |x− y| − |ŷ − y| ⩽ |x− y| − 1, and it
follows:

dist(x,Γd) ⩽ |x− xi| ⩽ |x− ŷ|+ |ŷ − xi| ⩽ |x− y| − 1/2,

which gives the desired construction. □

Theorem 5.4. — Given ρ0 ∈ Pp(Rd), let ν be a solution to (PΛ). Then it holds that
the measures (νδ)δ>0 are of the form

νδ = θδH
1 Σ, with ∥θδ∥L∞(Σ,H1) ⩽

7

2

Cd

L(ν)
,

for Cd = 2 +H1(Γd), Γd being the set from Lemma 5.3.
Therefore, if ρ0 ≪ H1 or has a L∞ density with respect to H1, so does ν, in par-

ticular it is a rectifiable measure.

Proof. — For y0 ∈ Σ, let us define the one-dimensional upper density [3, Def. 2.55]

θδ(y0)
def.
= lim sup

r→0

νδ(Br)

2r
.

We will show that θδ(y0) ⩽ 7
2Cd/L(ν), so that thanks to [3, Th. 2.56], νδ ≪ H1 Σ.

Since Σ is 1-rectifiable, it follows that for H1-a.e. y0 ∈ Γ, θδ(y0) is the Radon-
Besicovitch derivative of νδ with respect to H1 Σ, and the claim of the theorem
follows.

From the optimality of ν, the measure νδ,r solves problem (5.13). In order to build
a competitor we consider the set Γd from Lemma 5.3, choose some point y ∈ Γd and
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define
Γr

def.
= [y0, y0 + ry] ∪ (y0 + rΓd),

which is contained in B2r(y0). Notice that Σ∪Γr is always a compact, connected and
1-rectifiable set and one has

H1(Γr) = Cdr,

where Cd = 1 +H1(Γd) is a constant depending only on the dimension.
In the sequel, setting α = L(ν) we define the following parameter

mr
def.
=

H1(Γr)

ανδ(Br)
.

Suppose that Cd/α < 2θδ(y0). Then,

1 > m0
def.
=

Cd

2αθδ(y0)
= lim inf

r→0
mr.

Now, we consider a subsequence (rk)k∈N ↘ 0 such that limk→∞mrk = lim infr→0mr.
In particular, mrk ∈ (0, 1) for rk sufficiently small. For simplicity, in the sequel,
we drop the subscript k, yet we consider only r ∈ {rk}k∈N.

Let γΓr
be an optimal transport plan between mrρδ,r and α−1H1 Γr for the

Wasserstein-p distance and define the new plan

γ̃δ,r
def.
= γΓr + (1−mr) (id, πΓr )♯ ρδ,r, and ν̃δ,r

def.
= π1♯γ̃δ,r,

where πΓr
is a measurable selection of the projection operator onto Γr. This construc-

tion is illustrated in Figure 2. Therefore ν̃δ,r is admissible for (5.13) and we have the
following estimate:

W p
p (ρδ,r, ν̃δ,r) ⩽

∫
Rd×Rd

|x− y|pdγΓr
+ (1−mr)

∫
Rd

dist(x,Γr)
pdρδ,r.

We will estimate each term of the previous inequality separately. For the first one,
notice that as supp γΓr ⊂ Π−1

Σ (Br(y0))×B2r(y0), it holds that:

|x− y| ⩽ dist(x,Σ) + 3r, for γΓr
-a.e. (x, y).

For the second term, as the projection of x onto Σ is inside Br(y0), if follows from
Lemma 5.3 that:

dist(x,Γr) ⩽ dist(x,Σ)− r

2
, for dist(x,Σ) > 2r.

Therefore, for a fixed δ and taking 2r < δ, the Wasserstein distance is bounded by:

W p
p (ρδ,r, ν̃δ,r) ⩽ mr

∫
Rd

(dist(x,Σ) + 3r)pdρδ,r + (1−mr)

∫
Rd

(dist(x,Σ)− r/2)pdρδ,r.

Notice thatW p
p (ρδ,r, νδ,r) =

∫
Rd dist(x,Σ)

pdρδ,r, so in order to compare the Wasser-
stein distances we use the following inequalities:

(dist(x,Σ) + 3r)
p ⩽ dist(x,Σ)p + 3rp(dist(x,Σ) + 3r)p−1,(

dist(x,Σ)− r

2

)p

⩽ dist(x,Σ)p − r

2
p
(
dist(x,Σ)− r

2

)p−1

,

J.É.P. — M., 2025, tome 12



126 A. Chambolle, V. Duval & J. M. Machado

which follow from the convexity of t 7→ |t|p. Then, given ε > 0, if r ⩽ δε one deduces,
for dist(x,Σ) ⩾ δ, that:

(dist(x,Σ) + 3r)
p ⩽ dist(x,Σ)p + 3rp(1 + 3ε)p−1 dist(x,Σ)p−1,(

dist(x,Σ)− r

2

)p

⩽ dist(x,Σ)p − r

2
p
(
1− ε

2

)p−1

dist(x,Σ)p−1.

Therefore it holds that

W p
p (ρδ,r, ν̃δ,r) ⩽W p

p (ρδ,r, νδ,r) + pr∆r,ε

∫
Rd

dist(x,Σ)p−1dρδ,r

for ∆r,ε = 3mr (1 + 3ε)
p−1 − 1−mr

2

(
1− ε

2

)p−1

.

Hence from the optimality of νδ,r we have ∆r,ε ⩾ 0, so that letting r → 0 and then
ε→ 0, it must hold that 3m0 ⩾ (1−m0)/2, that is:

θδ(y0) ⩽
7

2

Cd

α
.

As a result, the family (νδ)δ>0 has a uniform L∞ density bounds, and so does the
limit measure supδ>0 νδ = (supδ>0 θδ)H

1 Σ. But as the exceeding measure can be
decomposed as (5.15) we deduce that whenever the initial measure ρ0 ≪ H1 or has
a L∞ density with respect to H1, so does the solution ν. □

6. Existence of solutions to (PΛ)

This section is dedicated to the proof of Theorem 1.1, item (2). Knowing that the
excess measure is absolutely continuous (Theorem 5.4), we use a blow up argument
near a rectifiability point y0 of Σ. From Lemma 5.2, the blow-ups of νexc minimize a
family of functionals (Fr)r>0, which in turn Γ-converge to some functional F . Since
these blow-ups also converge (for H1-a.e. y0) to a uniform density on Ty0

Σ, this
limit measure must also minimize the Γ-limit F . Yet if it is not zero, we can build
a better competitor (Lemma 6.3 below), giving a contradiction to the minimality of
the uniform measure. We deduce that νexc vanishes.

6.1. Blow-up and Γ-convergence. — In the sequel, we assume that ρ0 ≪ H1, so that
from Theorem 5.4 any minimizer ν, as well as (νδ)δ>0 (defined in (5.14)), are rectifiable
measures and we can write

νδ = θδH
1 Σ, for θδ ∈ L1(H1 Σ).

Observe that νδ-a.e. y ∈ Σ is a rectifiability point, and we choose y0 ∈ Σ such that

(6.1) Ty0
Σ exists and y0 is a Lebesgue point of θδ.

We then use Lemma 5.2 with the choice S0 × S1 = Dδ ×Br(y0), and we focus on the
variational problem (5.9): we obtain the families of measures (νδ,r)r>0 and (σδ,r)r>0

as νδ,r
def.
= νδ Br(y0) and σδ,r

def.
= π(1−r)♯

γδ,r, where (σδ,t)t∈[0,1] is a family of geodesic
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interpolations, as in Lemma 5.2, so that

(6.2) νδ,r ∈ argmin

W p
p (σδ,r, ν

′) :

there exists Γ such that
ν′ ∈ M+(Σ ∪ Γ),

ν′ ⩾ α−1H1 (Γ∖ Σ) ,

Σ ∪ Γ ∈ A, ν′(Rd) = νδ,r(Rd)

 .

From Lemma 5.1 the optimal transport plan between νδ,r and σδ,r is supported on
graph(ΠΣ).

The sequence of measures νδ,r are essentially a localization of νδ around y0 so,
by the blow-up theorem 2.4 (see also [3, Th. 2.83]), it holds that

(6.3) r−1Φy0,r
♯ νδ,r

⋆−−−⇀
r→0

θδ(y0)H
1 [−τ, τ ], where Rτ = Ty0Σ.

Up to a subsequence (not labeled) we also have:

(6.4) r−1Φy0,r
♯ σδ,r

⋆−−−⇀
r→0

σδ

for some measure σδ. By construction σδ,r is supported on {rδ−1 ⩾ dist(·,Σ) ⩾ rδ},
so that suppσδ ⊂ {x : δ−1 ⩾ dist(x,Rτ) ⩾ δ}.

In view of (6.3) and (6.4), we introduce the blow-ups of the measures νδ,r and σδ,r,

(6.5) νδ,r
def.
=

1

r
Φy0,r

♯ νδ,r, σδ,r
def.
=

1

r
Φy0,r

♯ σδ,r, and the set Σr
def.
=

Σ− y0
r

∩B1(0).

In addition, we define a family of functionals (Fr)r>0 as

(6.6) Fr(ν
′)

def.
=


W p

p (σδ,r, ν
′) ,

there exists Γ ⊂ B1(0) such that
ν′ ∈ M+(Σr ∪ Γ), ν′ ⩾ α−1H1 (Γ∖ Σr),(Σ− y0

r

)
∪ Γ closed and connected,

ν′(B1(0)) =
νδ(Br(y0))

r
,

+∞, otherwise,

where α = L(ν). Observing that for any given measures µ′, ν′ we have:

(6.7) W p
p

(1
r
Φy0,r

♯ µ′,
1

r
Φy0,r

♯ ν′
)
=

1

rp+1
W p

p (µ
′, ν′).

and recalling (6.2), we see that νδ,r ∈ argminFr for any r > 0.
The natural candidate for the limit of this family is the following:

(6.8) F (ν′)
def.
=


W p

p (σδ, ν
′) ,

there exists Γ ⊂ B1(0) such that
ν′ ∈ M+ ([−τ, τ ] ∪ Γ) ,

ν′ ⩾ α−1H1 (Γ∖ [−τ, τ ]) ,
Rτ ∪ Γ closed and connected,

ν′(B1(0)) = 2θδ(y0),

+∞, otherwise.
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Γi

[−τ, τ ] Σr

Γi Thi(Γi)

Cost

dH (Σr, [−τ, τ ]) ν([−τ, τ ]) dH (Σr, [−τ, τ ]) ν(Γi)

Cost

Σr

Figure 3. Transportation argument for the construction of a recovery
sequence in the Γ convergence of (Fr)r>0. Both operations have a
transportation cost of the order dH (Σr, [−τ, τ ]), and hence converge
to 0.

We prove in Theorem 6.1 below that Fr Γ-converges to F as r → 0+. We refer
to [9, 6] and in particular to [6, Def. 1.24]) for the definition of the (lower and upper)
Γ-limit. From the properties of the Γ-convergence, see [9, Cor. 7.20], it follows that
θδ(y0)H

1 [−τ, τ ] must be a minimizer of F (as the limit of minimizers of Fr). The
estimate from below of the Γ-liminf is obtained with the tools developed so far, while
estimating the Γ-limsup will require an appropriate construction illustrated in Fig-
ure 3.

Theorem 6.1. — The family of functionals (Fr)r>0 Γ-converges to F as r → 0+,
in the narrow topology.

Proof. — Γ-liminf: we consider an infinitesimal sequence (rn)n∈N such that (ν′n)n∈N
converges to ν′ in the narrow sense in B1(0), and that lim infn→∞ Frn(ν

′
n) < ∞ for

all n ∈ N, otherwise there is nothing to prove.
First we look at the first marginals in the definition of Frn . From (6.4) we know

that σδ,rn
⋆−−−−⇀

n→∞
σδ. By the lower semi-continuity of the Wasserstein distance with

respect to the narrow convergence, if we prove that F (ν′) < ∞, that is, if the limit
satisfies the constraints in the definition of F , we will have

F (ν′) ⩽ lim inf
n→∞

Frn(ν
′
n).

As αν′n ⩾ H1 (Γn ∖ Σrn) for some Γn ⊂ B1(0) such that r−1
n (Σ− y0) ∪ Γn ∈ A,

Blaschke’s theorem [3, Th. 6.1] and Lemma 2.6 imply that, up to a subsequence,
Γn

dH−−−−→
n→∞

Γ for some closed set Γ ⊂ B1(0) and r−1
n (Σ− y0)

K−−−−→
n→∞

Rτ . Hence,

Ξn
def.
=

(Σ− y0
rn

)
∪ Γn

K−−−−→
n→∞

Ξ
def.
= Rτ ∪ Γ.

Let us check that Ξ is connected (which is not immediate since the Kuratowski
limit of connected sets is not necessarily connected). Assume by contradiction that
there are two disjoint open sets U, V ⊂ Rd such that U ∩Ξ and V ∩Ξ form a partition
of Ξ. Since Rτ ⊂ Ξ is connected, it is contained in either U or V (say, U). As a result,
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V ∩ Ξ ⊂ Γ ⊂ B1(0) is bounded, and possibly replacing V with V ∩ B2(0), we may
assume that V is bounded too, so that ∂V is compact. Since Ξ ⊂ V ∩ (Rd ∖ V ),
we note that ∂V ∩ Ξ = ∅, and we deduce that minx∈∂V dist(x,Ξ) > 0.

Now, the Kuratowski convergence of Ξn towards Ξ implies that, for all n large
enough, Ξn intersects both V and U ⊂ Rd ∖ V , hence, by the connectedness of
Ξn, there exists xn ∈ Ξn ∩ ∂V . But the Kuratowski convergence also implies that
dist(·,Ξn) −→ dist(·,Ξ) locally uniformly (hence uniformly on ∂V ), which contradicts
that minx∈∂V dist(x,Ξ) > 0. As a result, Ξ is connected.

The fact that supp ν′ ⊂ [−τ, τ ] ∪ Γ comes from the weak convergence of ν′n to ν′.
As this convergence takes place in a compact set it also holds that ν′(B1(0)) =

limn→∞ ν′n(B1(0)) = 2θδ(y0) since θδ(y0) is the density of νδ at y0.
It only remains to verify the density constraints, αν′ ⩾ H1 (Γ∖ [−τ, τ ]). We can-

not apply Gołąb’s theorem to ν′n since, although αν′n ⩾ H1 (Γn ∖ Σrn), we do not
have an upper bound on the number of connected components of Γn ∖ Σrn . What
we do know is that the sequence Ξn = r−1

n (Σ− y0) ∪ Γn satisfies the assumptions of
Theorem 2.2, so we apply it to the measures H1 Ξn instead, remembering that

H1
(Σ− y0

rn

)
+ αν′n ⩾ H1

(Σ− y0
rn

∪ Γn

)
.

The left-hand side converges in the local weak-⋆ sense to H1 Rτ + αν′. The right-
hand side (which is bounded by the left-hand side) converges in the same sense, up to a
subsequence. We let λ denote a limit and Theorem 2.2 implies that λ ⩾ H1 (Rτ∪Γ),
which gives H1 Rτ + αν′ ⩾ H1 (Rτ ∪ Γ), and thus

αν′ ⩾ H1 (Γ∖ [−τ, τ ]).

Γ-limsup: Let (rn)n∈N be an infinitesimal sequence. By Lemma 2.6, we know
that (Σ − y0)/rn converges in the Kuratowski sense towards Rτ , and Σrn

def.
=

(Σ− y0)/rn ∩B1(0) converges towards [−τ, τ ] for the Hausdorff distance.
The strategy to prove the limsup is illustrated in Figure 3, and roughly ex-

plained as follows. We concatenate three steps. First we renormalize ν′ to satisfy
the mass constraint in Frn . But this normalization may break the condition
αν′n ⩾ H1 (Γ∖ [−τ, τ ]), so we slightly shrink the support to satisfy this constraint
again. We also need the measure ν′n to be supported on some connected set Σrn ∪Γn,
hence we move the mass of ν′ from [−τ, τ ] to Σrn by projection, and we translate the
mass of each connected component of the (shrunk) Γ∖ [−τ, τ ] so that it is connected
to Σrn . Eventually, by doing so, some parts of the support may get out of B1(0),
so we project the residual mass onto B1(0).

To be more precise, we first address the case θδ(y0) = 0. As F (ν′) < +∞ if and
only if ν′ = 0, we need only prove the result for ν′ = 0. Let Pn be any measurable
selection of the projection onto Σrn , and define ν′n

def.
= Pn♯σδ,rn . With Γ = ∅, and

since |x− Pn(x)| ⩽ δ−1 for all x ∈ suppσδ,rn , we observe that:

Frn(ν
′
n) ⩽W p

p (σδ,rn , ν
′
n) ⩽ δ−p νδ(Brn)

rn
−−−−−→
n→+∞

0 = F (ν′).
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Moreover, as ν′n −−−−−⇀
n→+∞

ν′ in the narrow topology, we have built a recovery sequence
for ν′.

Now, we deal with the case θδ(y0) > 0. Let ν′ such that F (ν′) < +∞, and let Γ

be a set as in (6.8). Observe that [−τ, τ ] ∪ Γ is connected, being the projection of
Rτ ∪Γ onto B1(0), and since it has finite H1 measure, it is arcwise connected, by [10,
Prop. 30.1, Cor. 30.2]. As a result, Rτ ∪ Γ is arcwise connected too.

Let (Ci)i∈I denote the arcwise connected components of Γ∖(Rτ). For each i ∈ I, as
the set Rτ ∪Γ is arcwise connected, one may check that there exists some zi ∈ [−τ, τ ]
such that {zi} ∪ Ci is arcwise connected. As a result, the set Ci ⊂ Rd ∖ (Rτ) cannot
consist of one single point, and H1(Ci) > 0. Therefore, the index set I is at most
countable.

Let us construct a recovery sequence (ν′n)n∈N. By the Kuratowski (even Hausdorff)
convergence of Σrn towards [−τ, τ ], for each i ∈ I, there exists a sequence (zn,i)n∈N
such that zn,i ∈ Σrn for each n ∈ N, and zn,i → zi. We then define:

an
def.
=

νδ(Brn)

2rnθδ(y0)
, and sn

def.
= max(1, a−1

n ),

noting that an → 1 and sn → 1, and we introduce the map Tn,

Tn(y)
def.
=

{
Pn(y/sn), if y ∈ [−τ, τ ],
(y − zi)/sn + zn,i, if y ∈ Ci,

where, as before, Pn is some measurable selection of the projection onto Σrn . The
map Tn shrinks each connected component Ci and translates it to the corresponding
zn,i ∈ Σrn so as to ensure connectedness (see below). Letting PB denote the projection
onto the unit ball B1(0), we eventually define

ν′n
def.
= (PB ◦ Tn)♯(anν′).

Let us check that ν′n converges to ν′ in the narrow topology. We note that for
y ∈ [−τ, τ ],

|y/sn − Pn(y/sn)| = dist (y/sn,Σrn) ⩽ dH ([−τ, τ ],Σrn) −−−−−→
n→+∞

0,

so that Tn(y) → y, and for y ∈ Ci,

|y − Tn(y)| ⩽ |y| (1− 1/sn) + |zi/sn − zn,i| −−−−−→
n→+∞

0.

As a result, for y ∈ [−τ, τ ] ∪ Γ, Tn(y) → y, and eventually PB ◦ Tn(y) → y. By the
dominated convergence theorem, we get that for any ϕ ∈ Cb(Rd),

∫
ϕdν′n = an

∫
[−τ,τ ]∪Γ

ϕ (PB(Tn(y))) dν
′(y) −−−−−→

n→+∞

∫
[−τ,τ ]∪Γ

ϕ (y) dν′(y)

so that ν′n −−−−−⇀
n→+∞

ν′ in the narrow topology.
Let us now check the constraints in Frn . From the properties of image measures,

we see that supp ν′n ⊂ B1(0), and that ν′n(B1(0)) = ν′n(Rd) = anν
′(Rd) = νδ(Brn)/rn,
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so that ν′n has the mass prescribed by Frn . Consider the set

(6.9) Γn
def.
=

⋃
i∈I

Γn,i where Γn,i
def.
= (PB ◦ Tn)(Ci).

In addition, the mass of ν′n is concentrated in Σrn ∪ Γn, and we prove below that
satisfies all the constraints in Frn .

First let us show that r−1
n (Σ − y0) ∪ Γn is connected. For each i ∈ I, as the set

{zi} ∪ Ci is arcwise connected, so is its image by the map y 7→ (y − zi)/sn + zn,i,
which is equal to {zn,i} ∪ Tn(Ci). As a result {zn,i} ∪ PB ◦ Tn(Ci) = {zn,i} ∪ Γn,i is
connected, as well as r−1

n (Σ− y0) ∪ Γn.
Let us show that r−1

n (Σ − y0) ∪ Γn is closed. If I is finite, then, by (6.9),
r−1
n (Σ− y0)∪Γn is closed as the finite union of closed sets. Otherwise, I is countable,

and from [28, Lem. 2.6], we have

H1(Γn,i) = H1(PB ◦ Tn(Ci)) ⩽ H1(Tn(Ci)) = s−1
n H1(Ci) −−−→

i→∞
0.

Let (xk)k∈N be a sequence contained in r−1
n (Σ−y0)∪Γn, such that xk → x. If there is

an infinite amount of terms of this sequence in either r−1
n (Σ− y0) or any of the Γn,i,

since these sets are closed, then x ∈ r−1
n (Σ − y0) ∪ Γn. Otherwise, we can find a

sub-sequence xk′ ∈ Γn,ik′ , so that

dist
(
x,

Σ− y0
rn

)
= lim

k′→∞
dist

(
xk′ ,

Σ− y0
rn

)
⩽ lim

k′→∞
H1(Γn,ik′ ) = 0,

and we conclude that r−1
n (Σ− y0) ∪ Γn is closed.

To show it satisfies the density constraints, take any non-negative ϕ ∈ Cb(Rd),

α

∫
ϕdν′n = αan

∫
[−τ,τ ]∪Γ

ϕ (PB(Tn(y))) dν
′(y)

⩾ αan
∑
i∈I

∫
Ci

ϕ (PB(Tn(y))) dν
′(y)

⩾ an
∑
i∈I

∫
Ci

ϕ (PB((y − zi)/sn + zn,i)) dH
1(y)

= ansn
∑
i∈I

∫
Γn,i

ϕ (PB(y
′)) dH1(y′)

⩾
∫
Γn

ϕdH1.

It follows that αν′n ⩾ H1 Γn and we conclude that Frn(νn) <∞, for all n ∈ N.
By the continuity of the Wasserstein distance with respect to the narrow conver-

gence (provided the measures are supported in some common compact set), we have
that:

Frn(ν
′
n) −−−−→

n→∞
F (ν′).

The Γ-convergence follows. □
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Now that we have characterized the limit problem, we show that the optimal trans-
portation is given by projections as the blow-up family.

Lemma 6.2. — If θδ(y0) > 0, the optimal transport plan between the measure σδ,
defined in (6.4), and ν = θδ(y0)H

1 [−τ, τ ], defined in (6.3), is unique and given by
the projection map Π[−τ,τ ].

Proof. — Consider a family γr of optimal transport plans from σδ,r to νδ,r. Up to a
subsequence it converges to some γ, which, by the stability of optimal transport plans,
also transports σδ to ν optimally. Since σδ,r, νδ,r are generated by the pushforward of
νexc Br(y0) by Φy0,r, from Lemma 5.1 we know that

supp γr ⊂ graph(ΠΣr
).

Let us show that supp γ ⊂ graph
(
Π[−τ,τ ]

)
. Indeed if (x, p) ∈ supp γ, there is an

open ball B centered at (x, p) such that

0 < γ(B) ⩽ lim inf
r→0

γr(B).

In particular, we can find supp γr ∋ (xr, pr) −−−→
r→0

(x, p). So it holds that

|x− p| = lim
r→0

|xr − pr| = lim
r→0

dist (xr,Σr) = dist(x, [−τ, τ ]),

where the last equality comes from the uniform convergence of the distance functions,
recalling from Lemma 2.6 that Σr

dH−−−→
r→0

[−τ, τ ].
Now we show that this property is true for any other optimal plan. Consider γ

transporting σδ to ν optimally, then by the optimality of γ it holds that∫
Rd

(dist(x, [−τ, τ ]))pdσδ =

∫
|x− y|pdγ =

∫
|x− y|pdγ

⩾
∫
(dist(x, [−τ, τ ]))pdγ =

∫
Rd

dist(x, [−τ, τ ])pdσδ.

Since |x − y| − dist(x, [−τ, τ ]) ⩾ 0 for γ-a.e. (x, y) and the inequality above must be
an equality, we must have supp γ ⊂ graph

(
Π[−τ,τ ]

)
for any optimal γ. In particular,

as Π[−τ,τ ] is uni-valued, it means that the optimal transport plan is unique and given
by the projection map. □

6.2. Competitor for the limit problem and existence for (PΛ). — Given y0 ∈ Σ

such that (6.1) holds, it follows from Theorem 6.1 that:

νδ
def.
= θδ(y0)H

1 [−τ, τ ] ∈ argminF,

where F is defined in (6.8). In addition, Lemma 6.2 shows that if θδ(y0) > 0, the
optimal transportation of σδ to νδ is given by the orthogonal projection. We show
that in this case, we can lower the energy by projecting part of the mass to a (closer)
horizontal line as in Figure 4. This contradicts the existence of rectifiability points
of Σ such that θδ(y0) > 0 so that νδ ≡ 0, and shows the following lemma:

Lemma 6.3. — For any δ > 0, the measures νδ defined in (5.14) vanish.
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[−ed, ed]

δ/2

ℓ(ε′)

s+ ε′

s− ε′

supp θi

s

Figure 4. Construction of a competitor for the minimization of F .

Proof. — Up to a rotation, we may assume that τ = ed, where (ei)
d
i=1 is a basis

of Rd. Since σδ is supported on
{
x = (x′, xd) ∈ Rd : |x′| > δ, |xd| ⩽ 1

}
, we can cover

its support with finitely many sets (Ei)
N
i=1 defined as:

Ei
def.
=

{
x = (x′, xd) ∈ Rd : ⟨ξi, x⟩ > δ/2, |xd| ⩽ 1

}
,

where ξi ∈ Sd−1 ∩ [ed]
⊥ are “horizontal” unit vectors and N depends only on the

dimension. We then define a disjoint family

F1 = E1, Fi+1 = Ei+1 ∖
i⋃

j=1

Fj for i ⩾ 1

and decompose our measures σδ and νδ as

σδ =

N∑
i=1

σδ,i, νδ =

N∑
i=1

νδ,i, where σδ,i
def.
= σδ Fi and νδ,i

def.
= projd♯σδ,i,

with projd : x 7→ xded the projection onto the vertical axis. By Radon-Besicovitch’s
differentiation theorem, νδ,i = θiH

1 [−ed, ed], where θi(s) = θi(sed) ⩾ 0 are such
that

N∑
i=1

θi = θδ(y0).

Consider s ∈ (−1, 1) a common Lebesgue point of all θi, i = 1, . . . , N . Let i
be the index for which θi(s) is maximal: then θi(s) ⩾ θδ(y0)/N . Up to a change
of horizontal coordinates, we assume that ξi = e1, and we introduce the notation:
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Rd ∋ x = (x1, x
′′, xd) for x′′ ∈ Rd−2. Let now:

Cε
def.
= Fi ∩

{
x ∈ Rd : |xd − s| < ε

}
⊂

{
x = (x1, x

′′, xd) : x1 > δ/2, |xd − s| < ε
}
.

We obtain, from the fact that (projd)♯σδ,i = θiH
1 [−ed, ed], that

σδ,i(Cε)

2ε
=

1

2ε

∫ s+ε

s−ε

θi(t)dt −−−→
ε→0

θ
def.
= θi(s) ⩾

θδ(y0)

N
.

Now, assume by contradiction that θ > 0. If ε is small enough, we have:

(6.10) θ ⩽
σδ,i(Cε′)

ε′
⩽ 3θ.

for all ε′ ⩽ ε.
Let us exploit the fact that, from Lemma 6.2, the optimal transport is given by

projections to propose a new transport map, sending the mass in Cε to a segment
pointing towards e1:

T (x)
def.
=

{
ℓ(|xd − s|)e1 + sed if x ∈ Cε,

projd(x) otherwise,

where ℓ : [0, ε] → R+ is defined via the conservation of mass relation, for 0 ⩽ ε′ ⩽ ε:

(6.11) ℓ(ε′) = ασδ,i(Cε′).

In other words, the mass that was sent to the vertical segment [s− ε′, s+ ε′]ed is now
sent to the horizontal segment sed + [0, ℓ(ε′)]e1, for each ε′ ∈ [0, ε]. This construction
is illustrated in Figure 4.

Thanks to (6.11), the map T sends σδ,i Cε to the measure α−1H1 L where
L

def.
= sed + [0, ℓ(ε)]e1, hence, the transported measure T♯σδ satisfies the constraints

in the definition (6.8) of the limiting functional F and one has F (T♯σδ) < +∞.
We shall now see that for each point x ∈ Cε with xd ̸= s, it holds that

(6.12) |x− projd(x)|p > |x− T (x)|p.

To show (6.12), recalling the notation x = (x1, x
′′, xd), it suffices that

|x− projd(x)|2 > |x−T (x)|2

⇐⇒ x21 + |x′′|2 > (x1 − ℓ(|xd − s|))2 + |x′′|2 + (xd − s)2

⇐⇒ 2x1ℓ(|xd − s|) > ℓ(|xd − s|)2 + (xd − s)2.

In addition to (6.10), we choose ε in such a way that for any x ∈ Cε we have

αθ|xd − s| ⩽ ℓ(|xd − s|) = ασδ,i(C|xd−s|) ⩽ 3αθε <
(
1 +

1

(αθ)2

)−1

δ

and hence

ℓ(|xd − s|)2 + (xd − s)2 ⩽
(
1 +

1

(αθ)2

)
ℓ(|xd − s|)2 < δℓ(|xd − s|) ⩽ 2x1ℓ(|xd − s|),

for all x ∈ Cε, with xd ̸= s, so that (6.12) holds. Since θ = θi(s) > 0, it follows that

F (T♯σδ) =W p
p (σδ, T♯σδ) < W p

p (σδ, νδ) = F (νδ).
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This contradicts the fact that θδ(y0)H1 [−ed, ed] is a minimizer of F , showing that
we must have θ = θi(s) = 0 and, in turn, θδ(y0) = 0. As this holds for H1-a.e. point
y0 ∈ Σ, we deduce that νδ ≡ 0. □

The previous lemma, combined with the characterization of solutions, as in (5.15),

ν = α−1H1 Σ+ sup
δ>0

νδ + ρexc Σ,

proves the following result, showing in particular point (2) of Theorem 1.1.

Theorem 6.4. — Let ρ0 ∈ Pp(Rd) and suppose that the parameter Λ < Λ⋆. Then the
solution to the relaxed problem (PΛ) is of the form

ν = L(ν)−1H1 Σ+ ρexc Σ,

where ρexc was defined in (5.4). In addition, if ρ0 does not give mass to 1-rectifiable
sets, any solution of the relaxed problem (PΛ) corresponds to a solution of the original
shape optimization problem (PΛ).

7. Ahlfors regularity

In this section we prove that whenever the initial measure ρ0 ∈ Ld/(d−1)(Rd), the
optimal solutions to the relaxed problem (PΛ) have an Ahlfors regular support.

Definition 7.1. — We say that a set Σ ⊂ Rd is Ahlfors regular whenever there exist
r0 > 0 and c, C > 0 such that for r ⩽ r0 it holds that

cr ⩽ H1(Σ ∩Br(x)) ⩽ Cr, for all x ∈ Σ.

We prove in this section the following result.

Theorem 7.2. — If ρ0 ∈ Ld/(d−1)(Rd), let ν be a solution of the relaxed problem (PΛ)
and Σ its support. Then Σ is Ahlfors-regular: there exist r0 > 0 and C > 0 such that,
for all x ∈ Σ and r ⩽ r0,

r ⩽ H1(Σ ∩Br(x)) ⩽ Cr.

Moreover, r0 depends only on d, p, ρ0 and α def.
= L(ν), while C depends only on d and p.

The lower bound (with c = 1 and r0 = diamΣ) follows directly from the connect-
edness of Σ. The upper bound will follow as a corollary of Lemma 7.3 below. Let us
describe the strategy for proving this estimate. We point out that the construction in
this section, although different, follows similar steps as the proof of Ahlfors’ regularity
in [27, Lem. 6.1, Th. 6.4].

The idea is similar to proving the L∞ bound on the excess measure: if in a small
ball Br(x) the measure ν has too much mass, we build another “closer” 1D structure
onto which the mass is transferred at a smaller cost.

Yet there is an additional difficulty: when replacing Σ∩Br(x) with another set we
must preserve the connectedness. The proof of Theorem 5.4, required to rearrange
only the excess mass and this was not an issue. We now need to control the number
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of connected components of Σ ∖ Br(x) and connect them back without adding too
much length. This number of connected components is controlled by the quantity
H0(Σ ∩ ∂Br(x)), which we can control on average by means of the generalized area
formula [3, Th. 2.91]: If f : RM → RN is a Lipschitz function and E ⊂ RM is a
k-rectifiable set then it holds that

(7.1)
∫
RN

H0(E ∩ f−1(y))dHk(y) =

∫
E

Jkd
EfxdH

k(x),

where dEfx is the restriction of ∇f(x) (when f is smooth) to the approximate tangent
space of E. Hence, choosing E = Σ∩(Br1(x)∖Br2(x)) and f : x 7→ |x−x|, we deduce
from (7.1) that

(7.2)
∫ r1

r2

H0(Σ ∩ ∂Bs(x))ds ⩽ H1(Σ ∩Br1(x))−H1(Σ ∩Br2(x)).

Using this we first prove the following lemma:

Lemma 7.3. — Assume ρ0 ∈ Ld/(d−1)(Rd). There exist C(d, p) > 0 and r0 depending
on ρ0, α, d, p, such that for any C ⩾ C, if r ⩽ r0 and x ∈ Σ, then

either H1(Σ ∩Br(x)) ⩽ Cr or H1(Σ ∩B2r(x)) ⩾ 10Cr.

Proof. — Let r > 0 and C ⩾ 1, and let x ∈ Σ be such that

(7.3) H1(Σ ∩Br(x)) > Cr and H1(Σ ∩B2r(x)) < 10Cr.

We show that if r ⩽ r0 and C ⩾ C, which will both be chosen later, then we can
construct a better competitor to the minimizer ν.

The function f : s 7→ H1(Σ ∩ Bs(x)) is nondecreasing, hence in BV (R+) and
satisfies, thanks to (7.2), that H0(Σ ∩ ∂Bs(x))ds ⩽ Df in the sense of measures
(equivalently, H0(Σ∩ ∂Bs(x)) is less than, or equal to f ′(s)ds, the absolutely contin-
uous part of Df).

We note that

inf
s∈(3r/2,2r)

(
sH0 (Σ ∩ ∂Bs(x))

H1(Σ ∩Bs(x))

)
⩽

2

r

∫ 2r

3r/2

sH0 (Σ ∩ ∂Bs(x))

H1(Σ ∩Bs(x))
ds

⩽ 4

∫ 2r

3r/2

1

f(s)
f ′(s)ds

⩽ 4 ln
( f(2r)

f(3r/2)

)
,

where we have used the classical chain rule at almost every point and [3, Cor. 3.29].
Since f(2r)/f(3r/2) < (10Cr)/(Cr) = 10, we deduce that there exists s ∈ (3r/2, 2r)

such that

(7.4) δsH0(Σ ∩ ∂Bs(x)) ⩽ H1(Σ ∩Bs(x)), where δ def.
=

1

4 ln 10
.

Now, we let

(7.5) M = 2
(
1 + 10 · (40/17)p−1

)
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(this choice will be made clear at the end of this proof) and we consider

(7.6) δ
def.
=

δ

10M
< δ <

1

2
.

We define a set Γ as follows: we choose a finite covering of ∂B1(0) with balls
B(xi, δ/2) centered at points (xi)

N
i=1 (the minimal number N depends only on d

and p, through δ). Then, we find a minimal tree connecting the points (xi)Ni=1 through
geodesics on the sphere. We add to this minimal tree the segments [xi, (1 + δ)xi],
i = 1, . . . , N . We call Γ the resulting (connected) set, whose total length L def.

= H1(Γ)

is of order at most 2Nδ and depends only on d and p. Notice that each point of ∂B1

is at distance at most δ, along the geodesic curve on the sphere, to a point of Γ, and
that thanks to the “spikes” [xi, (1 + δ)xi], any point with, say, |x| ⩾ 10 is closer to a
point of Γ than from any point in B1(0).

Now, we define
Γs

def.
= (x+ sΓ) ∪

⋃
x∈Σ∩∂Bs

Sx,

where Sx denotes a geodesic connecting x to x+ sΓ, of length at most H1(Sx) ⩽ sδ.
Since s < 2r and δ < 1/2, it follows that Γs ⊂ B3r(x). We define the competitor set
as

Σ′ def.
= Σ∖Bs(x) ∪ Γs.

The addition of the geodesics Sx ensures that Σ′ remains connected, and using (7.4),
we estimate the length of Γs as

(7.7)
H1(Γs) ⩽ Ls+ δsH0(Σ ∩ ∂Bs(x)) ⩽ 2Lr + 1

10MH1(Σ ∩Bs(x))

< (2L+ C/M)r,

where we have used (7.3) in the last estimate. Now we define a new competitor ν′
whose support is Σ′. If γ denotes an optimal transport plan from ρ0 to ν, given s > 0

let
ρs

def.
= π0♯

(
γ (Rd ×Bs)

)
denote the portion of the measure ρ0 which is transported to the ball Bs. In particular,
the above length estimates imply that

(7.8) Lr ⩽ H1(Γs) < (2L+C/M)r ⩽ (2L/C + 1/M)αν(Br) ⩽ αρr(Rd) ⩽ αρs(Rd),

where α def.
= L(ν), and using that M ⩾ 2 (see (7.5)) and assuming C ⩾ 4L (which

we recall depends only on d and p). But, if r is small enough (not depending on x,
by uniform equi-integrability of ρd/(d−1)

0 ) Hölder’s inequality implies that

(7.9) αρs(B10r(x)) ⩽ α∥ρ0∥Ld/(d−1)(B10r(x))|B10r(x)|1/d < Lr.

We fix r0 > 0, which depends only on the dimension (through L), the integrability of
ρ0, and α, such that the above inequality holds for r ⩽ r0.

Equations (7.8)–(7.9) show that for r small enough, part of the mass transported
to ν Bs must come from outside of the ball B10r. In particular, since t 7→ ρs(Bt(x))
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is continuous, there is R > 10r such that

(7.10) ρs(BR(x)) = α−1H1(Γs).

To form the new competitor we proceed as follows: the mass sent to Σ ∖ Bs

remains untouched, the mass ρs BR previously used to form ν Bs is transported
to α−1H1 Γs and the remaining mass is projected onto Γs.

So, letting γ̃ an optimal transport plan between ρs BR and α−1H1 Γs, we define
the plan

γ′ = γ Rd ×Bs(x)
c + γ̃ BR × Rd + (id, πΓs)♯(ρs Bc

R),

and the new competitor ν′ as its second marginal. By construction, αν′ ⩾ H1 Σ′

so that L(ν′) ⩽ L(ν). We now estimate the gain in terms of transportation cost.
• For (x, y) ∈ BR × Bs and for any y′ ∈ Γs ⊂ B3r, as s ⩽ 2r and 10r < R, the

convexity of t 7→ tp yields

|x− y′|p ⩽ (|x− y|+ 5r)
p ⩽ |x− y|p + 5rp (|x− y|+ 5r)

p−1

⩽ |x− y|p + 5rp(2R)
p−1

.

Hence integrating with respect to the transport plans we get∫
BR×Γs

|x− y′|pdγ̃ ⩽
∫
BR×Bs

|x− y|pdγ + 5rp (2R)
p−1

ρs(BR),

(this can be checked by disintegration with respect to their common first marginal,
which is the measure ρs BR).

• Similarly, for x ∈ Bc
R and y ∈ Bs ∖Br the addition of the spikes ensures that

|x− πΓs(x)| ⩽ |x− y|.

However if x ∈ Bc
R and y ∈ Br it holds that

|x− πΓs
(x)| ⩽ |x− y| − r

2
and |x− y| ⩾ R− r,

so that once again using the convexity of t 7→ tp we have

|x− πΓs
(x)|p ⩽

(
|x− y| − r

2

)p

⩽ |x− y|p − p
r

2

(
|x− y| − r

2

)p−1

⩽ |x− y|p − p
r

2

(17
20
R
)p−1

.

So, decomposing the integration for the points going to Br and to Bs ∖Br, this time
the transportation cost can be bound by:∫

Bc
R

|x− πΓs
(x)|pdρs =

∫
Bc

R

|x− πΓs
(x)|pd(ρs − ρr) +

∫
Bc

R

|x− πΓs
(x)|pdρr

⩽
∫
Bc

R×Br

|x− y|pdγ − p
r

2

(17
20
R
)p−1

ρr(B
c
R).

We get:

W p
p (ρ0, ν

′) ⩽W p
p (ρ0, ν) + 5rp (2R)

p−1
ρs (BR)− p

r

2

(17
20
R
)p−1

ρr(B
c
R).
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As L(ν′) ⩽ L(ν), the optimality of ν gives that W p
p (ρ0, ν) ⩽W p

p (ρ0, ν
′), which, along

with the previous estimates, implies

0 ⩽ 5 · 2p−1ρs (BR)−
1

2
(17/20)

p−1
ρr (B

c
R) ⇐⇒ ρr (B

c
R) ⩽ 10 · (40/17)p−1

ρs(BR).

On the other hand, since

ρr (BR(x)
c) = ν(Br(x))− ρr(BR(x)) ⩾ α−1Cr − ρr(BR(x)) ⩾ α−1Cr − ρs(BR(x)),

and recalling (7.7) and (7.10), we deduce:

C ⩽
(
1 + 10 · (40/17)p−1

)
(2L+ C/M).

We conclude that with the choice (7.5) of M , one has C ⩽ 2ML, which depends only
on p and d and a contradiction follows if we choose C = 1 + 2ML. □

Proof of Theorem 7.2. — Consider C, r0 from Lemma 7.3. Fix x ∈ Σ and assume
there is r ∈ (0, r0) such that H1(Σ ∩ Br(x)) > Cr. Then the thesis of the lemma
applies and it must hold that H1(Σ∩B2r(x)) ⩾ 10Cr. By induction, we find that for
k ⩾ 1, one of the following holds:

• either 2kr > r0;
• or we apply the lemma again (with C ′ = 5kC and r′ = 2kr), using that

H1(Σ ∩B2kr(x)) > 5kC(2kr),

and we get
H1(Σ ∩B2k+1r(x)) > 5k+1C(2k+1r).

Let k ⩾ 1 be the first integer such that 2kr > r0, so that 2k−1r ⩽ r0 and

5kC(2kr) < H1(Σ ∩B2kr(x)).

Hence, r0 < 2kr ⩽ 5−kC
−1

H1(Σ) and it holds that k ⩽ k0
def.
= log5(H

1(Σ)/Cr0), and

r > r02
−k ⩾ r0

def.
= r0 · 2−k0 .

This shows that, if r ⩽ r0 is such that H1(Σ∩Br(x)) > Cr, then r > r0. As a result,
for every r ⩽ r0 and every x ∈ Σ, we have H1(Σ ∩Br(x)) ⩽ Cr. □

Remark 7.4. — It is interesting to observe here that the regularity constant C depends
only on d and p, while the scale r0 at which the Ahlfors-regularity holds gets smaller
as ρ0 gets more singular or when α (or H1(Σ)) increases (which is when Λ decreases).

8. Conclusion

In this paper we have proposed a new variational problem, which serves as a method
for approximating a probability measure with a measure uniformly distributed over
a one-dimensional continuum. In order to prove existence, we have passed through
a relaxed problem and the definition of a new functional on the space of probability
measures, the length functional, that generalizes the notion of length of the support
of a measure. As a tool for our analysis we have also generalized Gołąb’s theorem to
the case of a sequence of possibly unbounded sets converging in the Kuratowski sense.
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We then have shown that solutions of the relaxed problems are, in fact, solutions to
the original one whenever the original measure does not give mass to 1-rectifiable sets
of Rd. We also have proved an elementary regularity properties of the optimal sets,
in the form of an Ahlfors regularity estimate.

There are still many open questions left, such as:
• Does the support of minimizers have loops or are they trees?
• What is the regularity of the optimal Σ? Can we adapt the theory in [25] and

conclude they are locally C1,α curves?
• If νΛ is a solution to (PΛ), what is the rate of convergence of νΛ

⋆−−−⇀
Λ→0

ρ0?
• The blow-up analysis in Section 6 is very similar to the arguments in [31] for

the blow-up of average distance minimizers. However, the argument is applied to the
excess measure and not to the entire solution. Can we use similar tools to study the
blow-ups of the optimal networks in our problem as well?

• What are the Euler-Lagrange equations of (PΛ)?
• Could we find (efficient) numerical algorithms to solve this problem?

Some progress has been made on a few of these questions: for instance in [21], it is
proved in a simplified setting (when ρ0 is a finite sum of Dirac masses) that the
solution is supported on a tree; in [22], a phase-field approach is suggested to approx-
imate Problem (PΛ), which could lead to (still complicated) numerical methods and
simulations.

Appendix A. Localized variational problem

In this section, we prove Lemma 5.2, which states that the optimality of ν implies
that the exceeding measure νexc, or a slight modification of it, must satisfy a localized
optimization problem. Before proceeding we review the notation introduced in the
statement of the lemma. Given an optimal transportation plan γ between ρ0 and the
minimizer ν, we recall the definition of γexc in (5.3) and we fix a general Borel set
S = S0 × S1 to define

γS
def.
= γexc S0 × S1

along with its marginals
ρS

def.
= π0♯γS νS

def.
= π1♯γS,

Proof of Lemma 5.2. — First, we fix some arbitrary Γ such that Σ∪Γ ∈ A. We consider
measures ν′ ∈ M+(Σ∪Γ) such that ν′(Rd) = νS(Rd) and ν′ ⩾ α−1H1 (Γ∖Σ), and
we build competitors to ν of the form ν − νS + ν′. Such measures are supported over
Σ ∪ Γ ∈ A and

ν − νS + ν′ = νH1 + (νexc − νS) + ν′

⩾ α−1H1 Σ+ α−1H1 (Γ∖ Σ) ⩾ α−1H1 (Σ ∪ Γ),

so that L(ν − νS + ν′) ⩽ α = L(ν). By optimality of ν, we deduce that

W p
p (ρ0, ν) ⩽W p

p (ρ0, ν − νS + ν′).
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Given any transport plan γ′ from ρS to ν′, γ − γS + γ′ is a transport plan from ρ0
to ν − νS + ν′ and it follows, from the optimality of ν and γ:∫

|x−y|pd(γ−γS)+
∫

|x−y|pdγS =

∫
|x−y|pdγ ⩽

∫
|x−y|pd(γ−γS)+

∫
|x−y|pdγ′,

so that:

(A.1)
∫

|x− y|pdγS ⩽
∫

|x− y|pdγ′.

Observe that in case ν′ = νS (and Γ = ∅), we find that γS is an optimal plan. In par-
ticular the left-hand side of this equation is W p

p (ρS, νS). Since the same argument
applies to γ − γS, we observe that:

(A.2) W p
p (ρ0, ν) =W p

p (ρ0 − ρS, ν − νS) +W p
p (ρS, νS).

Considering an optimal transport plan γ′ in (A.1), we get in addition that
W p

p (ρS, νS) ⩽W p
p (ρS, ν

′) for all the admissible variations ν′ of the excess measure.
As γS is an optimal transportation plan between ρS and νS, from [30, Th. 5.27] one

can define a constant speed geodesic between such measures as

σS,t
def.
= π(1−t)♯

γS, where πt(x, y)
def.
= (1− t)x+ ty.

Hence for any variation ν′, admissible in the sense of the previous problem, and
for any t ∈ [0, 1], it holds that

Wp (ρS, σS,t) +Wp (σS,t, νS) =Wp (ρS, νS) ⩽Wp (ρS, ν
′)

⩽Wp (ρS, σS,t) +Wp(σS,t, ν
′),

where the equality comes from general properties of constant speed geodesics in met-
ric spaces, while the inequalities come from the minimality of νS and the triangle
inequality, respectively. We conclude that in fact, the measure νS also minimizes the
Wasserstein distance to any measure σS,t along the geodesic. □

Appendix B. Kuratowski convergence and Gołąb’s theorem

In this appendix we give a proof of Lemma 2.1. We then give a simple proof of the
local version of Gołąb’s, Theorem 2.2. We use the notation BR = {x : |x| < R} and
BR = {x : |x| ⩽ R}.

Proof of Lemma 2.1. — Notice that, up to a translation, it suffices to prove the result
for x0 = 0. We can also assume that C ̸= ∅, otherwise for any R > 0, Cn ∩ BR = ∅
for n large enough and the result holds. Defining R0 = inf{R > 0 : C ∩ BR ̸= ∅},
we have that if R < R0, one has Cn ∩BR = ∅ for n large enough and the Hausdorff
limit is empty, as expected.

Now we take R ⩾ R0 and consider a subsequence (Cnk
)k∈N and a closed set CR

such that
Cnk

∩BR
dH−−−−→

n→∞
CR.
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Since Cnk
∩BR ⊂ Cnk

, it holds that CR ⊂ C. On the other hand, given x ∈ C ∩BR,
if there exists xn ∈ Cn ∩BR with xn → x, then x ∈ CR. Therefore

C ∩BR ⊂ CR ⊂ C ∩BR

and to finish the proof it suffices to show that there is a countable set I ⊂ [R0,+∞)

such that if R ̸∈ I, R > R0, then C ∩BR = C ∩BR.
Let ξ ∈ ∂B1 and consider the function R 7→ dist(Rξ,C ∩ BR). If R > R′ ⩾ R0,

it holds that
dist(Rξ,C ∩BR) ⩽ dist(R′ξ, C ∩BR′) +R−R′.

Indeed, let xR′ be the point minimizing the distance from R′ξ to C ∩BR′ , then

dist(Rξ,C ∩BR) ⩽ d(Rξ, xR′) ⩽ d(Rξ,R′ξ) + d(R′ξ, xR′)

= dist(R′ξ, C ∩BR′) +R−R′.

Hence the function φξ : R 7→ dist(Rξ,C∩BR)−R, is nonincreasing in [R0,+∞) and
in particular it has at most a countable number of discontinuity points. In addition,
given ξ, ξ′ ∈ ∂B1, it holds that

|φξ(R)− φξ′(R)| =
∣∣∣ inf
x∈BR

d(x,Rξ)− inf
x∈BR

d(x,Rξ′)
∣∣∣

⩽ sup
x∈BR

|d(x,Rξ)− d(x,Rξ′)| ⩽ R|ξ − ξ′|.

Therefore if R is a point of discontinuity for φξ, then for all ξ′ in a neighborhood of ξ,
R is a point of discontinuity for φξ′ .

Let (ξn)n∈N be a dense sequence in ∂B1. For each n we can find a countable subset
In ⊂ [R0,+∞), such that φξn is continuous at any R ∈ (R0,+∞) ∖ In. Finally,
we define the countable set I as I =

⋃
n∈N In.

If R ̸∈ I, then either R < R0 and C ∩ BR = C ∩BR = ∅, or R > R0. In that
case, for any ξ ∈ ∂B1, φξ is continuous. Otherwise, there would be some ξn, close
enough to ξ, such that φξn is discontinuous, a contradiction. In particular, whenever
x = Rξ ∈ C the continuity of φξ implies that

lim
R′↑R

dist(R′ξ, C ∩BR′) = 0.

Hence take Rn ↑ R, set εn
def.
= dist(Rnξ, C ∩ BRn

) and let xn ∈ C ∩ BRn
be a vector

attaining this distance. As xn ∈ C∩BR and |x−xn| ⩽ εn+R−Rn, xn converges to x,
and x ∈ C ∩BR. It follows that (C ∩BR)∖ C ∩BR = ∅, completing the proof. □

Proof of Theorem 2.2. — We will show that µ(Σ ∩ Br(y0)) ⩾ H1(Σ ∩ Br(y0)) for
H1-a.e. y0 ∈ Σ and for r > 0 small enough. This implies that Θ1(µ, y0) ⩾ 1, and
the result follows by integrating. Assume that Σ is not a singleton, otherwise there is
nothing to prove. Since a compact and connected set with finite length is path-wise
connected, see [10, Prop. 30.1 & Cor. 30.2] and [1, Th. 4.4], for any y0 ∈ Σ, for r > 0

small enough Σ ∩ Bc
r(y0) ̸= ∅ and there is a path connecting y0 to the boundary

∂Br(y0) of length at least r. From the Kuratowski convergence, for n large enough,
each set Σn has a point inside and another outside the ball Br(y0).
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We start by fixing some 0 < δ < r and looking at the smaller ball Br−δ(y0).
Consider the following class

An
def.
=

{
γ connected component of Σn ∩Br(y0) which intersects Br−δ(y0)

}
.

Each γ ∈ An must be such that H1(γ) ⩾ δ. Indeed, as for each n ∈ N there is a point
in Σn ∩Br(y0)

c and another in γ ∩∂Br−δ(y0), the connectivity implies γ is contained
in an arc joining these two points, but then it must have length at least δ, as it is the
smallest distance between the two balls. So define

Σ̃n
def.
=

⋃
γ∈An

γ,

which is a bounded sequence of closed sets, but not necessarily connected. However
this sequence has a uniformly bounded number of connected components since

δ♯An ⩽
∑

γ∈An

H1(γ) ⩽ H1(Σn∩BR(x0)), hence ♯An ⩽ sup
n∈N

H1(Σn ∩BR(y0))

δ
< +∞,

for R > 0 large enough.
As Σ̃n is a bounded sequence, by Blaschke’s theorem we can assume up to an

extraction that Σ̃n
dH−−−−→

n→∞
Σ̃. In fact, for a.e. 0 < δ < r, using Lemma 2.1, it holds

that

(B.1) Σ̃ ∩Br−δ(y0) = Σ ∩Br−δ(y0),

since by the construction, Σ̃n ∩ Br−δ(y0) = Σn ∩ Br−δ(y0) and choosing δ such that
Σn ∩Br−δ(y0)

K−−−−→
n→∞

Σ ∩Br−δ(y0).
This way, we can apply the global version of Gołąb’s theorem with a uniformly

bounded number of connected components to the sequence Σ̃n ∩Br−δ(y0) so that we
write

µ
(
Br(y0)

)
⩾ lim sup

n→∞
H1 (Σn ∩Br(y0)) ⩾ lim sup

n→∞
H1(Σ̃n)

⩾ lim inf
n→∞

H1(Σ̃n ∩Br−δ)

⩾ H1(Σ̃ ∩Br−δ(y0)) = H1
(
Σ ∩Br−δ(y0)

)
⩾ H1(Σ ∩Br−δ(y0)),

where the first inequality is due to the local weak-⋆ convergence of the measures and
the forth is given by Gołąb’s theorem. But as this estimate is true for any δ > 0, it
must hold that µ

(
Br(y0)

)
⩾ H1 (Σ ∩Br(y0)) for any y0 ∈ Σ and r > 0. To extend

this to open balls as well we use the following estimates

µ(Br) = lim
n→∞

µ
(
Br−1/n

)
⩾ lim

n→∞
H1

(
Σ ∩Br−1/n

)
= H1(Σ ∩Br). □

J.É.P. — M., 2025, tome 12



144 A. Chambolle, V. Duval & J. M. Machado

References
[1] G. Alberti & M. Ottolini – “On the structure of continua with finite length and Gołąb’s semi-

continuity theorem”, Nonlinear Anal. 153 (2017), p. 35–55.
[2] L. Ambrosio, E. Brué & D. Semola – Lectures on optimal transport, Unitext, vol. 130, Springer,

Cham, 2021.
[3] L. Ambrosio, N. Fusco & D. Pallara – Functions of bounded variation and free discontinuity

problems, Oxford Math. Monographs, The Clarendon Press, Oxford University Press, New York,
2000.

[4] L. Ambrosio, N. Gigli & G. Savaré – Gradient flows in metric spaces and in the space of proba-
bility measures, second ed., Lectures in Math. ETH Zürich, Birkhäuser Verlag, Basel, 2008.

[5] L. Ambrosio & P. Tilli – Topics on analysis in metric spaces, Oxford Lecture Series in Math.
and its Appl., vol. 25, Oxford University Press, Oxford, 2004.

[6] A. Braides – Γ-convergence for beginners, Oxford Lecture Series in Math. and its Appl., vol. 22,
Oxford University Press, Oxford, 2002.

[7] G. Buttazzo & E. Stepanov – “Optimal transportation networks as free Dirichlet regions for
the Monge-Kantorovich problem”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 2 (2003), no. 4,
p. 631–678.

[8] N. Chauffert, P. Ciuciu, J. Kahn & P. Weiss – “A projection method on measures sets”, Constr.
Approx. 45 (2017), no. 1, p. 83–111.

[9] G. Dal Maso – An introduction to Γ-convergence, Progress in Nonlinear Differential Equations
and their Appl., vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1993.

[10] G. David – Singular sets of minimizers for the Mumford-Shah functional, Progress in Math.,
vol. 233, Birkhäuser Verlag, Basel, 2005.

[11] C. De Lellis – Rectifiable sets, densities and tangent measures, Zurich Lectures in Advanced
Math., European Mathematical Society, Zürich, 2008.

[12] S. Delattre & A. Fischer – “On principal curves with a length constraint”, Ann. Inst. H. Poin-
caré Sect. B (N.S.) 56 (2020), no. 3, p. 2108–2140.

[13] M. Ehler, M. Gräf, S. Neumayer & G. Steidl – “Curve based approximation of measures on
manifolds by discrepancy minimization”, Found. Comput. Math. 21 (2021), no. 6, p. 1595–1642.

[14] H. Federer – Geometric measure theory, Grundlehren Math. Wissen., vol. 153, Springer-Verlag
New York, Inc., New York, 1969.
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